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BRIDGING THE PHYSICAL, THE DIGITAL, AND THE SOCIAL
The scope of the column includes IoT technological achievements that have social impacts and/or incorporate social factors. Each 
column will provide knowledge and insights in the most recent developments, cutting-edge applications, latest deployments, and con-
ceptual innovations, and of course, their implications on our society. I hope the columns will be meaningful in understanding how our 
society interacts, adopts, adapts to, and changes with IoT technological advancements.

aBStract

The Internet of Things has been regarded as an extension of 
the Internet and can bring significant changes to our world. A 
large variety of IoT applications have greatly facilitated our daily 
lives, such as sharing bicycles, and sharing power banks, for exam-
ple. These applications optimize resource allocation and thus 
enhance the efficiency of our society. This article presents a novel 
IoT application which aims to protect everyday direct-drinking 
water in schools, via the Internet of Things and blockchain. The 
system, developed by our IoT team from Zhejiang University and 
CMCC (China Mobile Communications Group) and deployed in 
39 schools in Hangzhou, benefits more than 40,000 students. 

introDuction
Drinking-water safety, especially in schools, has been consid-
ered one of the fundamental tasks of the Chinese government. 
At present, most of the primary and secondary schools in cities 
in China are equipped with direct-drinking water dispensers 
with semipermeable membrane filtration. The criterion, “Tech-
nical requirements and specifications on the drinking water 
equipment with membrane treatment for primary and middle 
schools,” issued by the Ministry of Education of China, has been 
in force since September 1, 2019. The principle of membrane 
filtration is based on the use of a RO (Reverse Osmosis) mem-
brane to filter out impurities, heavy metal ions, bacteria and 
other organic pollutants in tap water. The process is imple-
mented by a filter set in the direct-drinking equipment. Usually, 
these filter sets have a certain life span and need to be replaced 
regularly according to the volume of the flow filtered. How to 
eff ectively evaluate the status of a filter set and get it replaced 
in time has been an important problem for school managers, as 
well as for health supervision departments. 

To solve this problem, our team devised a high-precision 
NB-IoT (Narrow Band Internet of Things) water meter with 
the capability for remote transmission. We also developed 
automatic processing programs running on our cloud platform 
to handle these data and send messages to related managers 
in real time. NB-IoT is one of the most representative IoT com-
munication technologies in the LPWA (low power wide area) 
category. It perfectly meets the deployment requirements for 
massive device numbers, low cost, low power consumption, 
long-term battery lifetime and excellent network coverage. 
These features greatly facilitate the deployment and mainte-
nance of our system. 

On our cloud platform, the interaction between the physical 
world and the digital world runs as a series of workflows. These 
workflows are activated by the filter-set replacement detection 
events generated from the calculated results of the upload-
ed data, ended by filter-set replacement events submitted by 
the maintainers or other dispositions made by specific manag-
ers with granted permission. By using blockchain, all data are 
encrypted and stored in blocks of multiple nodes. The system 
saves a lot of labor costs by shifting the complex management 
processes in the physical world to automatic processing pro-
grams in the digital world. Thanks to the real-time property of 
the IoT system, the efficiency of all relevant units in supervision 
has been significantly improved. 

PhYSical SYStEM DEPloYMEnt
For direct-drinking water equipment, there are mainly two 
kinds of maintenance tasks. The first is filter set checking. To 
monitor the amount of water filtered by a filter set, we deploy 
our high precision NB-IoT smart water meter in front of the 
filter set, as shown in Fig. 1. The meter accurately measures 
the flow purified by the filter set in real time and transmits 
data to our cloud platform through the NB-IoT network. Basi-
cally, every filter set in the equipment has a rated water vol-
ume according to its “health permit approval” issued by the 
local health supervision department. Before reaching the lim-
ited volume stated in its “health permit approval,” the filter 
set has to be replaced in advance to avoid degradation to the 
drinking-water quality. 

Another maintenance task is the regular disinfection of 
the direct-drinking fountains, which is usually done by experi-
enced maintainers before school every day. The supervision 
and record-keeping of the disinfection process is low efficien-

cy, involving high labor costs and 
many paper records. In our solution, 
we propose a way to automatical-
ly identify and record disinfection 
operations by using a mobile app 
cooperating with low power con-
sumption Bluetooth tags, which are 
mounted on the equipment to sense 
and record the information of the 
disinfection maintainer and operat-
ing timestamp. As shown in Figure 
2, when the disinfection maintain-
er stands near the tags, the mobile 
app will automatically complete the 
check-in operation and send data to 
the cloud platform where operating 
data entry is calculated and stored. 

HOW IOT AND BLOCKCHAIN 
PROTECT DIRECT-DRINKING 
WATER IN SCHOOLS
by Zhiguo Shi, Jingxiong Liang, Jun Pan, and Jiming Chen
Zhejiang University

Figure 1. Illustration of hardware installation pipeline.
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PlatforM SErVicES With BlocKchain
When the high-precision NB-IoT water meters collect and 
upload data to the cloud platform, a series of service 
programs evaluate the life of the filter set and generate 
workflow events that send warning messages to the specific 
maintainer in real time. The replacement of the filter set 
will be recorded by the maintainer’s mobile phone and 
synchronized to the platform directly. The disinfection oper-
ations are processed in the same way. When malpractice 
is detected, the programs will send warning messages to 
different superior roles. The platform is accessible to cam-
pus administrators, professional maintainers, health supervi-
sion departments, and superior management departments. 
Those departments collaborate efficiently on the platform 
under different levels of access permissions. The mainte-
nance information of each direct-drinking water equipment 
is also available to the public through the Internet. Every-

one including children’s parents can be a supervisor. We 
also make efforts to improve the transparency and reli-
ability of the supervision data. The IoT system guarantees 
the data is collected and uploaded in real time. However, 
there is still a risk for the data to be tampered with, which 
usually means evasion of responsibility. By using the distrib-
uted blockchain network, we have technically ensured that 
the data cannot be tampered with. Specifically, we built 
a decentralized blockchain network based on the Hyper-
ledger Fabric, which is the most popular open-source con-
sortium blockchain program at present. On this basis, we 
encapsulated multiple interfaces in the chaincode for writ-
ing and reading these important data and deployed the 
chaincode on the decentralized network. The properties 
of the chaincode invocation mechanism and the histori-
cal traceability mechanism of ledgers specifically solve the 
problem of transparent supervision of the direct-drinking 
water system. Along with real-time transmission, real-time 
blockchain-based storage guarantees reliability and trans-
parency. 

Figure 2. Bluetooth check-in scheme.

Figure 3. Physical system deployment.

Figure 4. Platform panel.
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Social Effects
Direct-drinking water in schools usually lacks sufficient super-
vision. By using IoT and blockchain technologies, we have 
brought different roles of departments into the regulatory 
processes, enabling them to collaborate on the platform for 
efficient supervision. Health-related maintenance information 
is also made public through the Internet, and the blockchain 
ensures the credibility of the information. Besides, our plat-
form can also analyze the statistics of water consumption by 
students through massive equipment data and decide whether 
to increase the number of equipments in schools. The water 
consumption of students can also provide some reference for 
health experts. 

Solution Prospect
At present, this project has already been put into practice in 
39 schools in the Shangcheng District of Hangzhou. There are 
326 IoT meters deployed which benefit more than 40,000 stu-
dents. This project reduces the workload of health supervisors 
and promotes the traditional on-site supervision to automatic 
remote monitoring. By using IoT and blockchain technologies, 
we built this application with reliability and transparency. Now 
we are working closely with CMCC to bring this project into 
more scenarios. 
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Figure 5. System architecture.



IEEE 6TH WORLD FORUM ON
THE INTERNET OF THINGS

5-9 April 2020  //  New Orleans, LA, USA
The IEEE 6th World Forum on Internet of Things (WF-IoT 2020) is the premier IoT conference of 
the IEEE Initiatives which will take place in the famous New Orleans on 5-9 April 2020. Every 
year the world forum is attended by hundreds of most active IoT participants from research 
community, government and public sector, businesses, multinational corporations and industry. 

The technical papers, presentations and events at this conference are focused on contributions 
to nurture, cultivate, enhance and accelerate the adoption of IoT technologies and applications 
for the benefit of humanity.  WF-IoT 2020 will include a multi-dimensional program of technical 
research papers, presentations, panels, workshops, tutorials and industry forum on the latest 
technology developments and innovations in many fields and disciplines that drive the utility 
and vitality of IoT solutions and applications.

The conference venue will be the Hilton New Orleans Riverside located on the banks of the 
Mississippi River connected to the Outlet Collection at the Riverwalk, and just a few blocks from 
the French Quarter. 

https://wfiot2020.iot.ieee.org

ABOUT IEEE
IEEE is the world’s largest technical professional organization with over 400,000 members dedicated to 
advancing technology for the benefit of humanity. www.ieee.org

JOIN US AT
WF-IoT 2020

C

M

Y

CM

MY

CY

CMY

K

WFIoT20-ComMag-Nov19-Issue_v2_22OCT19_JB_Print-Ready.pdf   1   10/22/19   4:56 PM



IEEE Internet of Things Magazine • December 20196

PRIVACY AND SECURITY
This column delves into privacy risks of the IoT using risk concepts that are more native to the security domain in order to conceptu-
ally bridge our collective understanding, articulation, and management of privacy concerns in the IoT which otherwise might not be 
sufficiently considered or foreseen by existing legal and technical controls.

An IoT device in a Faraday cage is about as good as a paper-
weight. Yet, the inherent openness of wireless systems leaves 
IoT devices exposed to vulnerabilities. These vulnerabilities 
are unavoidable precisely because inputs into radio receivers 
cannot be sealed off and wireless links cannot be completely 
isolated. Left unaddressed, these spectrum vulnerabilities can 
be exploited by malicious actors or be the source of non-mali-
cious harmful interference, both of which can have high social 
and economic costs.

Notwithstanding these vulnerabilities, wireless devices have 
become increasingly prevalent, and our reliance on radios is 
only expected to increase.1 This is unsurprising considering 
that connected devices have become indispensable to public 
safety and national security communications, business and 
critical infrastructure operations, navigation, socializing, and 
entertainment.

Stakeholders and policymakers have only just begun to 
understand how the prevalence of connected devices and their 
vulnerabilities results in a high number of actual and potential 
security risks. Consequently, they have struggled to identify and 
understand those risks, let alone develop solutions to address 
them. If vulnerabilities cannot be identified, they cannot be 
prioritized, and if they cannot be prioritized, they will not be 
sufficiently resourced.

In March 2019, I was invited to attend and report on 
a roundtable discussion convened by Silicon Flatirons that 
brought together experts from government, academia, and 
industry to discuss spectrum vulnerabilities.2 This column, which 
will be presented in two parts, captures some of the discussion. 
Part I will focus on the systematic and technological challenges 
to identifying and understanding spectrum vulnerabilities. Part 
II, which will appear in the next issue of IEEE Internet of Things 
Magazine, will focus on recommendations to address those 
challenges. The ideas and conclusions herein are attributable 
to the participants, who engaged in the conversation under the 
Chatham House Rule.3

Systematic Challenges
Systematic challenges are those that result from institutional 
shortcomings, and manifest in inadequate practices, norms, 
laws, and regulations.

Data Collection and Analysis. Inadequate data collection is 
one of the most significant barriers to identifying and under-

standing spectrum vulnerabilities. Data collection often fails 
to occur because harmful interference goes unreported when 
users assume that equipment is malfunctioning instead of expe-
riencing harmful interference, or because users do not know 
that such interference should be reported. Even for users that 
want to monitor interference, it can be difficult to do because 
devices are not designed to enable such monitoring. At a 
broader scale, some operators might not be able to detect 
interference because they outsource expertise about network 
functions to vendors.

Data Sharing. Even when there are tools to collect and pro-
cess data, insufficient data sharing among wireless system oper-
ators and with the government keeps operators from having 
information they need to mitigate risks and prevents collabo-
rative efforts to prevent vulnerabilities. Even if there were ade-
quate reporting tools, some operators are reticent to share data 
because it could contain confidential or proprietary information 
or information that could be used to assess liability. Addition-
ally, after the National Security Agency’s massive surveillance 
program was revealed in 2013, operators hesitate to share data 
with the government due to concerns the government would 
exploit their vulnerabilities.

Research and Testing. Currently, researchers are not getting 
the data they need to conduct testing. This is in part because 
data is not being shared with them, but also because aca-
demic researchers are increasingly limited by what they can 
demonstrate in paper and analysis simulations, as a result of 
inadequate access to real-life networks with which they can 
experiment. Closed-form solutions are becoming less viable 
because of increased system complexity, discussed below, not 
to mention the high cost of proper testing equipment, typically 
beyond the budget of academic researchers to obtain on their 
own. Even when research can be conducted, it can be of limit-
ed effect, as it often occurs after networks are already commis-
sioned, designed, and deployed. 

Government Resources and Authority. Limited government 
resources and the ways in which those resources are distributed 
also hinders efforts to identify and address spectrum vulnerabil-
ities. For example, the Federal Communications Commission’s 
Enforcement Bureau, which is limited to civil (and not criminal) 
enforcement, has fewer than 200 people, split among six divi-
sions, so only a small number cover all the spectrum interfer-
ence issues across the U.S. Additionally, while there may be 
dozens of entities in the federal government alone that work in 
some fashion on spectrum and wireless communications issues, 
they may not be positioned to collaborate or even know that 
the other ones exist. 

Education. Most policymakers probably cannot explain 
the difference between 4G and 5G, let alone the diverse and 
complex causes of spectrum vulnerabilities. As a result, they 
often do not address vulnerabilities until a harmful event has 
already occurred. Comprehension of spectrum issues is hardly 
any better among the general public. Most users do not know 
when equipment they are using is causing harmful interfer-
ence or that they might be under the jurisdiction of a federal 
agency’s enforcement authority because the equipment radi-
ates energy.

Technological Challenges
Technological challenges are those that result from the design 
and distribution of wireless systems.

Spectrum Vulnerabilities, 
Part I: Systematic and 
Technological Challenges 
to Identifying and  
Understanding  
Vulnerabilities
by Chris Laughlin
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System Design. Equipment commoditization creates mis-
aligned incentives for system developers because it prioritizes 
qualities like high-speed, low cost, and speed to market over 
security and resiliency. Even when vulnerabilities in wireless 
systems are known, they are not given adequate attention. 
Such is the case for passive intermodulation (PIM), which 
can be exploited for much more sophisticated attacks,4 and 
4G LTE specifications, which offer a software stack directly 
connected to the vulnerable open wireless input. Despite that, 
those specifications might be used for 5G networks being 
developed today.

System Complexity. Equipment design vulnerabilities are 
magnified when vulnerable components are used in the design 
of other systems. This introduces a level of complexity into a 
system that obscures the source of the vulnerability because 
the component’s vulnerability can cause insecurity in the entire 
system with significant consequences. This occurs, for exam-
ple, when components are purchased because they offer high 
performance but have low security and yet are being built into 
devices that have important safety-of-life functions, such as 
medical devices.

Supply Chain Security and Diversity. The most prominent 
example of supply chain security risks are concerns that Huawei 
is building back doors into their equipment, which could later 
be exploited by the Chinese government.5 Equipment with such 
vulnerabilities could be used, for example, to cause jamming by 
changing channels within radios to achieve massive pileup pol-
lution within a network. Yet, the equipment is popular for 5G 
deployments because of its low cost. Over the long term, a lack 
of equipment diversity has its own risks. The ubiquity of technol-
ogy from a foreign source could allow an intelligence service to 
gain leverage, not through a back door, but because it helped 
build the network, and thereby knows the network better than 
anybody else does. Equipment diversity risks increase as the 
number of trusted suppliers decreases due to competition.

Standards Setting. Many participants commented that stan-
dards setting is falling short of addressing system design, system 
complexity, and supply chain issues. System complexity is one 
reason existing standards are insufficient. Standards setting orga-
nizations often develop standards and conduct testing for a par-
ticular use, but do not account for the introduction of optional 
features that are not tested or do not have standards and may 
have vulnerabilities of their own. Standards are also often devel-
oped after innovations are already on the market. Additionally, 
the U.S. government may be falling short on influencing stan-
dards setting bodies, hamstrung by its deference to industry and 
its cadence of technology neutrality. 

Adoption of Standards. Even if the right standards are devel-
oped and are effective, system and equipment developers may 
not implement them. The only teeth the government has to 
drive standards adoption in the U.S. free market economy is 

federal dollars (i.e., procurement and grant money), which is 
of limited use. For example, consider the case of public safety. 
There are 330 million people in the U.S., but the public safety 
population is only about 3 million people, or about one per-
cent,6 not to mention the global population and the global 
market, in which many equipment developers compete. The 
public safety market does not have enough influence to change 
industry behavior on its own.

Availability of Harmful Equipment. The risks associated with 
spectrum vulnerabilities are increasing because there is great-
er availability of cheap equipment for bad actors. It is only a 
matter of time before somebody decides to build a jammer to 
interfere with radio communications for fun. In fact, jammers, 
despite being illegal in the U.S., can be purchased online. It is 
difficult for the government to police the entry of malicious, as 
well as non-compliant, products into the U.S. because of the 
aforementioned limited government resources.

Conclusion
The roundtable identified a number of systematic and tech-
nological challenges that prevent identification and under-
standing of spectrum vulnerabilities. Many, if not all, will 
need to be overcome to prevent future vulnerabilities and 
address those that already exist. In Part II of this column, I 
will discuss many of the solutions proposed by the roundta-
ble participants.
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FOOTNOTES
1 See Internet of Things Forecast, Ericsson, https://www.ericsson.com/en/mobility-re-

port/internet-of-things-forecast (last visited Nov. 18, 2019) (noting there will 29 
billion connected devices by 2022; a small number will be phones and computers 
using wired connections).

2 Chris Laughlin, Roundtable Report: Spectrum Vulnerabilities, Silicon Flatirons 
(June 28, 2019), https://siliconflatirons.org/publications/roundtable-report-spec-
trum-vulnerabilities/.

3 Under the Chatham House Rule, participants are free to use and discuss information 
received, but neither the identity nor the affiliation of any participant may be revealed.

4 PIM is when the interaction between different physical elements in a network results 
in interference. See Lou Frenzel, Passive Intermodulation (PIM): What You Need 
To Know, Electronic Design (Mar. 5, 2013), https://www.electronicdesign.com/
wireless/passive-intermodulation-pim-what-you-need-know.

5 Id.
6 U.S. and World Population Clock, U.S. Census Bureau, https://www.census.gov/

popclock/ (last visited June 25, 2019)



IEEE Internet of Things Magazine • December 20198

GUEST EDITORIAL

We are on the verge of a new agricultural revolution. If 
we look at the extended agricultural sector, intended 
as the one cultivating plants and farming livestock, with 

the exception of mechanization and the introduction of chemicals 
(often referred to as the 3rd agricultural revolution) there have 
not been too many changes in the past few hundred years. 

In fact, due to its intrinsic complexity and variability imposed 
by type, climate, soil, meteo, etc., looking after a living object 
(be it a plant, a fi sh or an animal) has been until now and for 
the past millennia probably characterized by success practices 
passed down from father to son. Such a view is supported by 
statistics like those published by the EU, showing for example 
that 93.7 percent of all farms are run by only family workers1: 
well established and stable business models, best known by the 
locals and refi ned over centuries of family trial and error.

Until recent years, challenges posed by climate change as 
well as globalization are undermining the stability of those mod-
els and the status-quo of agricultural businesses as there are 
many more factors that can infl uence the successful outcome of 
cultivations and farming. More meteorological extreme events, 
global warming, foreign pests and diseases2, coupled with a 
global reduction of arable land3 and an increase of population 
on earth4, all point in one direction: the need for improved 
quality and quantity of agricultural monitoring data, for more 
insightful interpretation of cause-eff ect relationships, and for a 
more effi  cient and sustainable use of natural resources such as 
land, water, etc. 

Needless to say, we think IoT technology has a huge role to 
play in such a landscape, as it can provide an unprecedented 
source of monitoring data at a very detailed granularity level; 
with huge amounts of data comes the ability to interpret it for a 
meaningful and business-viable purpose. 

In this Special Issue we touch upon many of these subjects, 
spanning far and wide between technologies (best picks for 
wide range connectivity, edge computing, use of machine 
learning and artificial intelligence) and application domains 
(from optimized use of irrigation water to fish farming and 
aquaculture to dairy herds management).

Ensuring wide coverage in rural areas is one of the key 
enablers to foster innovation in agriculture. As opposed to 
Smart Cities, rural areas are characterized by customers who 

are struggling daily with low margins of running their business-
es: covering wide areas for large operators has to be econom-
ically viable. Striking such a balance means that low-cost wide 
coverage can only be guaranteed for so called LPWANs (Low 
Power Wide Area Network technologies) such as LoRa, SIG-
FOX and NB-IoT, to name a few of the most popular ones, all 
of them characterized by a very low bit-rate supported, per con-
nected customer’s device. Having a thin pipe toward the public 
Internet means that transmitting raw data monitoring is not an 
option, especially if it consists of images or, even worse, videos. 
The article entitled “Energy Neutral Machine Learning based 
IoT Device for Pest Detection in Precision Agriculture” by D. 
Brunelli et al., focuses on bridging competences on running a 
low-energy edge computing platform to process data close to 
the monitoring source and running on it lightweight algorithms 
trained for the detection of a particular pest, the codling moth, 
aff ecting apple orchard cultivations. In this way the LoRaWAN 
network can be accessed only to communicate a signal if and 
when the pest is recognized. 

The performance of these networks as the numbers of con-
nected devices per gateway grow are also subject of scrutiny. 
As mentioned above, operators will want to strike the right bal-
ance between infrastructure investment and fulfi lling the needs 
of rural communities, knowing that this is a low-margin market 
where what matters is reaching big numbers thanks to the wide 
range of their connectivity networks. The article entitled “Inter-
net of Things and LoRaWAN Enabled Future Smart Farming” 
by B. Citoni et al., after introducing the design details of LoRa 
and LoRaWAN technology, sheds some light on state-of-the-art 
achievements and on limitations and bottlenecks of such a tech-
nology used in the AgriTech domain.

We already mentioned the need for ensuring that the use 
of technologies in an agricultural context is economically via-
ble but can also support sustainable practices. The article enti-
tled “Advancing IoT-Based Smart Irrigation” by R. Togneri et 
al. takes a deep cut at one of the most traditional application 
domains for which we have seen the use of IoT until now: the 
one supporting smart irrigation. The cost of irrigation water is 
still not a major concern, but it will not be this way for long 
given all the eff ects associated with climate change (droughts 
and more frequent extreme events are globally reducing the 

INTRODUCTION TO THE SPECIAL ISSUE ON 
IOT AND AGRICULTURE

Raffaele Giaffreda



9IEEE Internet of Things Magazine • December 2019

GUEST EDITORIAL

ability of soil to retain water). But until volumetric water charges 
for irrigation become widely imposed, adoption will be limited 
to those contexts where there can be substantial electricity 
savings from reducing the amounts of irrigation water that need 
to be pumped. Given the wide variability solving irrigation prob-
lems faces, the article proposes a flexible architecture to easily 
connect IoT and Machine Learning (ML) components to build 
application solutions in a modular fashion. It shows results from 
pilot implementations run between Europe and Brazil.

Besides irrigation and precision agriculture, the most popular 
application domains are where IoT can indeed provide strong 
support to replace the need for human manpower monitoring, 
allowing farmers to monitor their farms (fish and livestock) with-
out necessarily being physically present. 

In this context, the article entitled “Precision Aquaculture” 
by F. O’ Donncha and J. Grant illustrates how, combining part-
ners’ competences and assets from industry, technology and 
academia, it is possible to provide data-driven insights and deci-
sions that promote ecologically sustainable intensification of 
aquaculture, taking the example of deployments in a number of 
fish-farms in eastern Canada.

From Canada to Ireland, moving from fish-farming to con-
nected cows, with the article entitled “Connected Cows: Uti-
lizing Fog and Cloud Analytics Toward Data Driven Decisions 
for Smart Dairy Farming” by M. Taneja et al., we step into the 
big issue of being able to monitor the health of cattle just by 
tracking the animals with some devices (such as pedometers or 
collars) and recognizing patterns that can be related to a partic-
ular condition which, if predicted and controlled early enough, 
can lead to substantial treatment cost savings. The solution illus-
trated in this last article is like the others, showing the benefits 
of being able to monitor environmental conditions through the 
use of low-cost IoT sensing devices and networks. What one 
does with collected data in terms of actuation and control and 
how successful the application can become in terms of busi-

ness, is dependent on the competences of the domain experts 
to interpret the data and to the ability to relate outcomes to 
predictions that have a substantial impact on the farmers’ bot-
tom line. The more we see of such solutions to farmers’ real 
problems at a sustainable cost, the more we will see the wide-
spread adoption of AgriTech solutions which will accelerate a 
new data-based revolution in the agricultural sector.

To conclude, I would like to thank the authors and the 
reviewers for their contributions to this Special Issue and the 
Editor-in-Chief for the opportunity. It has been an insightful and 
interesting journey and the hope is that the final outcome will 
generate the same level of interest for the readers of the IoT 
community involved at various levels and with different roles in 
this fascinating application domain.
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Energy Neutral Machine Learning Based  
IoT Device for Pest Detection in  

Precision Agriculture

Introduction
Recent technological advances have paved the way for remote 
agricultural sensing and automation. Consequently, sophisti-
cated energy neutral low cost sensors [1] and communication 
systems [2] can be used as components to monitor and control 
systems for a sustainable and healthy environment, which is a 
requirement for smart agriculture applications [3]. However, 
current wireless sensing platforms and communication systems 
are designed for bare remote monitoring without making any 
immediate decision after the damage has already been done 
[4]. Moreover, the large-scale deployment of sensors would 
result in a tremendous increase in the number of connections 
and the amount of data to be transmitted, which could over-
whelm current communication systems and also data analysis 
algorithms [5]. 

Reconceiving the paradigm of remote sensing operation is 
imperative to improve the operational performance of preci-
sion agriculture. Adding intelligence to the nodes, shifting the 
detection of anomalies near the sensor to permit decisions and 
actions as soon as possible, is the key to reduce the communi-
cation costs and latencies, and to permit high scalability of IoT 
solutions in agricultural environments. 

Nowadays, machine learning (ML) algorithms are widely 
used in many fields and are particularly innovative in agricul-
ture to compute tasks such as species recognition [6], water 
management, crop quality [7], disease detection, and weed 
detection. 

This article focuses on an automatic method for monitoring 
parasite insects from images taken in pest traps. The codling 
moth is a particular insect that looks like a butterfly, and it is a 
dangerous parasite for apple fruit crops. An energy-efficient IoT 
solution shows how the feasibility of classifying parasites from 
other general insects autonomously, using low power consump-
tion hardware directly infield. Moreover, the article shows the 
fast and cost-effective realization of an intelligent sensor and 
communication system that can be applied in agricultural mon-
itoring and control. It runs ML on the sensor board, and if the 
insect captured by the camera is classified as a codling moth, a 
report is sent for an immediate counteraction. 

IoT System
Current methods to monitor pests consist of capturing insects 
using commercial pheromone-based glue traps, as shown in 
Fig. 1a, that attract insects even if present at very low densities. 
Periodic in-field inspections or simple wireless cameras permit 
the farmer to watch each insect and determine if it is a codling 
moth [8]. This process is not as smart as an IoT solution could 
be. In fact, it is slow because it requires the full time presence 
of an expert, and it is inefficient because even though ML is 
used, it requires full images sent for remote classification [6]. 

The proposed system, as shown in Fig. 1b, processes the 
picture in situ near the sensor (preprocessing algorithm), returns 
a classification of the insects (ML algorithm) in the trap, and 
eventually sends a notification to the farmer if it recognizes a 
codling moth. 

As presented in Fig. 2, the system is embedded on a Rasp-
berry PI 3 that provides the preprocessing stage. Then an Intel 
Movidius neural compute stick (NCS) with an Intel Myriad X 
neural accelerator as a vision processing unit (VPU) classifies 
the images using the model obtained after the training of the 
deep neural network (DNN). 

The system, shown in Fig. 3, has been designed to bring IoT 
technologies in agriculture where the need to collect the output 
over vast areas requires long-range communication. Thanks to 
the onboard intelligence, the output of the smart trap is limited 
to the few bytes for the report after the classification process, 

Abstract
Apples are among the topmost fruit crops of the world, and apple orchards are widely expanding in many regions and countries. 

The most common problem for these crops is the attack of the codling moth, which is a dangerous parasite for apples. IoT sensing 
devices can nowadays run near sensor machine learning algorithms, thus giving not only the possibility of collecting data over wide 
coverage but even featuring immediate data analysis and anomaly detection. Near sensor neural network algorithms can automatically 
detect the codling moth: the system takes a picture of the trap, preprocesses it, crops each insect for classification, and eventually 
sends a notification to the farmer if any codling moth is detected. The application is developed on a low-energy platform powered by 
a solar panel of a few hundred square centimeters, realizing an energy autonomous system capable of operating unattended contin-
uosly over low power wide area networks. An insightful aspect of this IoT solution is the low power platform for a machine learning 
algorithm used for IoT fast prototyping. The hardware is based on the Raspberry Pi3 board and the Intel Movidius Neural Compute 
Stick, responsible for the preprocessing technique and the neural network implementation, respectively. The network model has been 
analyzed in detail, showing parameter settings and the limitations for the specific hardware constraints. The performance of the pro-
posed system is assessed, and remarks on power consumption are discussed for achieving the zero energy balance of the system.

Digital Object Identifier: 10.1109/IOTM.0001.1900037

Figure 1. Codling moth traps: a) commercial trap; b) prototype of 
the IoT neural network codling moth smart trap.

(a) (b)
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and output messages can be managed even with low bit rates. 
If the farmer needs a visual confirmation from the captured pic-
ture, a few images per day can be transmitted as well. Therefore, 
the trap uses low-power wide area network (LPWAN) technolo-
gies and specifically the long-range WAN (LoRaWAN) protocol, 
which has gained momentum in the market recently. LoRa is a 
wireless modulation designed for long-range communication at 
very low energy consumption and bit rate [9]. The LoRaWAN 
stack defines the communication and security protocols to guar-
antee interoperability on top of the LoRa network [10, 11]. 

ImAGe PreProceSSInG And deeP LeArnInG 
The dataset used to start the DNN training contained approxi-
mately 1300 pictures and was incremented when more insects 
were trapped during the earliest experiments. The dataset rep-
resents two classes: codling moth and general insects. These 
figures are used to feed and train the DNN with a TensorFlow 
model. We used the VGG16 model developed by Oxford Uni-
versity [12]. Then it was converted to a graph model used to 
perform the classification on the VPU. 

The dataset was created with the same camera and trap. 
The camera captures the bottom side of the insect glue trap; 
thus, as shown in Fig. 4, pictures may contain a high number 
of trapped insects to classify. Thus, the images are processed in 
situ to separate each insect in sub-tiles from the original picture. 
This step is essential since it filters the raw pictures, as shown 
in Fig. 4, and produces tiles that contain only one insect. This 
algorithm is used in two diff erent cases: 
• To build a large and comprehensive dataset of pictures for train-

ing the DNN model. We started with 100 raw pictures that 
generated more than 1300 tiles containing only one insect. 

• At each application startup, a picture of the trap is taken first, 
and then, thanks to the preprocessing algorithm, each new 
trapped insect is cropped for the classification step. 
The task efficiently exploits features such as color (dark sub-

jects on a white background) and the shape of the insects with a 
Blob Extraction algorithm. The process for image crop consists of: 
• Conversion of the frame from RGB to gray scale
• Smoothing (or blurring) of the frame with a Gaussian filter
• Edge extraction through a Canny operator
• Some dilation and erosion of the picture

After these operators, the blobs are detected through the 
OpenCV blob detector. Then each blob is collected in a vector, 
and the corresponding regions of interest are cropped. All the 
new pictures are saved for neural network classification. 

trAInInG, VALIdAtIon, And teSt
For the training stage, we used the rapid development of neu-
ral networks for image classification provided by the Tensor-
Flow library [13]. In an ML approach, an initial training step is 
required. The training consists of an offline process that optimiz-
es the neural network using a large dataset of labeled images. In 
this way, the system learns the classes assigned to the images. 
The basic unit of a DNN is the neuron (or node) that multiplies 
by weight values the input signals. The training phase adjusts 
the weight values, while some parameters, such as the number 
of epochs and the image size, can improve the accuracy of a 
DNN. Epochs represent the number of times all of the training 

vectors are used once to update the weights. Each epoch finish-
es with a validation step that evaluates the ongoing training 
process. A good trade-off  between the number of epochs and 
image size is necessary for a correct training stage and to meet 
the hardware constraints. The training stage of this application 
has been assessed with three diff erent configurations: 
• 75 epochs, image size 224  224
• 10 epochs, image size 112  112
• 10 epochs, image size 52  52

The results of the training tests are presented in Fig. 5. 
Notice that training and validation accuracy using 75 epochs 

Figure 2. Overall system diagram.

Figure 3. Hardware implementation

Figure 4. Examples of cropped images after pre-processing: a) 
raw picture; b) tile with a codling moth; c) tile with a general 
insect; d) tile with a codling moth.

(a)

(b) (c) (d) 
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is going to be saturated, which suggests that the number of 
epochs can be decreased to achieve similar performance. As 
shown in the graphs, 10 epochs are enough for the target accu-
racy. Moreover, to avoid possible overflow in the Movidius NCS 
and to save memory on the Raspberry PI 3, the image size can 
be decreased to meet the hardware constraints because we 
can use simpler models. We used and tested images of 112 
112 and 52  52 pixel size, as shown in Fig. 5. Small images 
clearly show worse performance with respect to bigger tiles. 
Nevertheless, about 98 percent accuracy has been achieved, 
that satisfies the requirements expected by farmers for an IoT 
service of parasites monitoring. 

Figure 6 shows an example of the output from the classifi-
cation. The DNN provides a confidence measure that indicates 
how close the detected object is to a general insect or the tar-
get Codling Moth. 

The tests of the DNN model were carried out during 12 
weeks in an apple orchard with the insect glue trap shown in 
Fig. 1. Tests have involved 262 new insects where: 
• 80.6 percent were classified correctly.
• 4.8 percent were false positives.
• 6.4 percent were false negatives.
• 8.2 percent were uncertain.

Thus, the precision is 94.38 percent, the recall is 92.6 per-
cent, and only 8.2 percent need a user assessment watching the 
raw image. 

PoWer ASSeSSment
In apple orchards, codling moth checking is usually executed twice 
every day. We evaluated the power consumption of the overall 
system’s classification, as shown in Fig. 3, which is divided into five 
general tasks with diff erent execution time and current consumption:
• Task 0: Boot of the Raspberry (Time 43.68 s, Average Current 

345 mA)
• Task 1: Image capture (Time 3.45 s, Average Current 394 mA)
• Task 2: Preprocessing (Time 4.07 s, Average Current 501 mA)
• Task 3: Classification (Time 10.19 s, Average Current 525 mA)
• Task 4: Report/Alarm generation (Time 0.34 s, Average Cur-

rent 525 mA)
When the system finishes Task 4, it shuts down, and zeroes 

its power consumption, while a nanowatt real-time clock (RTC) 
is activated to trigger and boot the application when planned. 

As expected, it is possible to observe that T3 is the most 
power hungry task because it combines the usage of the Rasp-
berry and the Intel Movidius. Figure 7 shows the power con-
sumption of the overall system from T0 to T4, and the total 
energy necessary is 124.1 J; thus, a 9000 mAh battery is 
sufficient to sustain the system for more than one year. More-
over, when combining the system with a 0.5 W solar panel of a 
few hundred square centimeters, as presented in [14], the ener-
gy intake will be enough to permit the smart camera to operate 
unattended indefinitely. 

This particular aspect represents a breakthrough for agri-
cultural activities because this means that a farmer could use a 
smart IoT insect trap, forget about its maintenance, and wait for 
only automatic alerts if a codling moth is captured. 

Figure 5. Training and validation accuracy and loss function.

(a) 75 epochs, image size 224x224. (b) 10 epochs, image size 112x112. (c) 10 epochs, image size 52x52.

(d) 75 epochs, image size 224x224. (e) 10 epochs, image size 112x112. (f) 10 epochs, image size 52x52.

Figure 6. Example of moth detection from the system.



IEEE Internet of Things Magazine • December 2019 13

concLuSIonS
Even though the proposed system does not use ultra-low-power 
microprocessors or microcontrollers, its average power con-
sumption is minimal because of its low duty cycle. Due to the 
low cost of the hardware, this type of system can scale to sever-
al installations in the farmer’s apple orchard, and save time and 
money for human intervention in trap checking every day. This 
type of application is straightforward and innovative, and gives 
an additional value to agriculture. In this way, it is possible to 
use treatments for codling moth only when the system detects 
threats for crops, optimizing the use of chemicals and mitigating 
their impact on the environment. 
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Internet of Things and  
LoRaWAN-Enabled Future Smart Farming

Introduction
World population is expected to grow by 2.3 billion, rising 
to over 9 billion people before 2050. Most of this growth is 
expected to happen in developing countries. As a result, the 
U.N. Food and Agriculture Organization predicts that food pro-
duction in these countries will need to almost double. Limited 
and reducing amount of arable land, global climate change, 
growing scarcity of water, fossil fuel scarcity, and energy price 
are all factors that will negatively affect the food production 
process. In this vicious cycle, overpopulation leads to increased 
demand for agricultural products while also reducing the 
amount of agricultural destined land, converted into space for 
infrastructure and housing. Increasing production alone is not 
enough to achieve food security, and as such we need to look 
at solutions outside the traditional agriculture methods, creating 
smarter and technology-enabled agricultural solutions. 

The Internet of Things (IoT) is a technological advancement 
capable of improving efficiency in the global agricultural land-
scape, accelerating progress toward the goal of increased pro-
duction. By IoT we mean an architectural framework for systems 
where computing devices including sensors and actuators wire-
lessly exchange data collected from everyday objects to either a 
final user or other machines, in order to monitor and automate 
processes. It is estimated by market analysts that by 2020 a total 
of 28 billion devices will be connected to the Internet. This net-
work of Internet connected objects collects relevant data with 
sensors to be transferred and processed remotely and gives 
feedback on the current status and actions needed to improve 
performance. Looking at agricultural applications, these sensors 
usually gather information about soil and weather condition, 
animal welfare, crop behavior, and machine status. Smart irri-
gation systems can, for instance, utilize water more efficiently, 
only watering the right amount, only in the patch of field which 
requires it, and at the best time. In turn, this optimizes resource 
consumption such as water and energy, as well as cost of labor. 
Such technological advances will play a fundamental role in 
achieving the prospected increased production requirements 
when coupled with artificial intelligence (AI)-based program-
ming designed to predict potential issues and provide an ade-
quate response. However, outstanding research issues remain 
such as developing sensors, communication protocols, and data 
processing algorithms that can satisfy all the requirements in the 
context of future smart farming while at the same time being 
sustainable and cost-effective. 

This article is structured as follows. An introduction to 
low-power wide area networks (LP-WANs) is presented 
in the next section. Then a review of long-range (LoRa) and 
Lo-RaWAN is presented, followed by a discussion of current 
state-of-the-art applications for smart agriculture. We then dis-
cuss LoRaWAN technology bottlenecks. Future directions in 
research are discussed, followed by concluding statements in 
the final section. 

Communication Protocols and IoT
Fundamental to the IoT revolution is the adoption of a commu-
nication technology that can satisfy requirements on three fun-
damental metrics: energy efficiency, coverage, and scalability. 
Traditional short-range protocols such as Wi-Fi and Bluetooth, 
as well as long-range ones such as cellular and satellite com-
munication, fail to provide the required performance to the IoT 
deployments in smart agriculture and other similar industrial 
applications. While these protocols in fact are established, nei-
ther short-range technologies nor long-range ones are suitable 
for deployments over a vast area, with sensor nodes that are 
meant to be “deployed and forgotten”: capable of operating for 
as long as possible with little to no maintenance [1]. 

Cellular technologies are flawed by design, as they can 
handle the high data rates of multimedia traffic, allowing only 
relatively few devices to connect to each base station while 
granting them wide bandwidth. This is the opposite of what 
is required by IoT, where a high number of sensor nodes only 
need the bandwidth necessary to transmit a few bytes every 
few minutes. This makes long-range technologies impossible 
to be scaled up without increasing costs and energy con-
sumption. Satellite coverage, while having possibly the best 
range of all the technologies, is simply too expensive and ener-
gy-inefficient for multiple-sensor applications [2]. Short-range 
communications protocols such as Wi-Fi and Bluetooth suffer 
partly from the same design flaw as cellular. Although these 
technologies are in use in some agri-tech applications today, 
they were also designed to handle a higher volume of data 
than is required for standard IoT purposes at the expense of 
increased power consumption, which makes them infeasible 
for battery-powered devices to be used in rural areas and diffi-
cult to access in agricultural and natural environments. These 
shortcomings were mitigated with the introduction of low-
er-energy protocols based on IEEE 802.15.4 and designed for 
wireless sensor networks such as ZigBee. However, their mesh 
network architecture presents challenges when increasing the 
amount of connected devices past a certain number without 
exponentially increasing the network complexity and its power 

Abstract
It is estimated that to keep pace with the predicted population growth over the next decades, agricultural processes involving food 

production will have to increase their output up to 70 percent by 2050. “Precision” or “smart” agriculture is one way to make sure 
that these goals for future food supply, stability, and sustainability can be met. Applications such as smart irrigation systems can utilize 
water more efficiently, optimizing electricity consumption and costs of labor; sensors on plants and soil can optimize the delivery of 
nutrients and increase yields. To make all this smart farming technology viable, it is important for it to be low-cost and farmer-friendly. 
Fundamental to this IoT revolution is thus the adoption of low-cost, long-range communication technologies that can easily deal with 
a large number of connected sensing devices without consuming excessive power. In this article, a review and analysis of currently 
available long-range wide area network (LoRaWAN)-enabled IoT application for smart agriculture is presented. LoRaWAN limitations 
and bottlenecks are discussed with particular focus on their effects on agri-tech applications. A brief description of a testbed in devel-
opment is also given, alongside a review of the future research challenges that this will help to tackle.
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consumption. For large-scale, sustainable applications over vast 
areas, both the long-range communication available to cellu-
lar and satellite, the lower deployment costs associated with 
Bluetooth and Wi-Fi and the power consumption of protocols 
designed with wireless sensor networks in mind such as ZigBee 
are needed. 

LP-WANs are a type of wireless communication network 
designed to fit all these specifications. While unsuitable for 
heavy data transmission and multimedia streaming due to very 
narrow band and low data rate, they can easily support the 
transmission of small packets of data from sensors and to actu-
ators, minimizing power consumption and design complexity, 
and thus costs. This is shown in the visual comparison of tech-
nologies according to several performance metrics in Fig. 1. 

lora and loraWan 
LoRa is a derivative chirp spread spectrum (CSS) modulation 
technique and proprietary physical (PHY) layer developed 
by Cycleo to achieve high-range low-power communication. 
LoRaWAN is a medium access control (MAC) layer protocol 
built on LoRa, and its specifications are openly available as well 
as being endorsed by the LoRa Alliance. 

lora PhYsIcal laYer 
LoRa uses the licence-free region-dependent industrial, scien-
tific, and medical (ISM) frequency bands: 863–870 MHz for 
Europe and 902–928 MHz for the United States. However, it 
can also be set to operate in the lower ISM bands of 433 MHz 
and 169 MHz. 

While this makes the deployment cheaper due to the use 
of the unlicensed ISM frequency spectrum, it also restricts the 
maximum achievable data rate because of regulations on avail-
able air time per device on the same frequencies. The enforced 
duty cycle is 1 percent for the commonly used frequency sub-
bands of 863.00–868.00 MHz and 868.00–868.60 MHz. Each 

sub-band must remain “silent” for a period of time that is pro-
portional to the time on air of the packet and the maximum 
available duty cycle enforced [3]. For instance, for an air time of 
1 s and a duty cycle of 1 percent, the sub-band will have a 99 s 
mandatory silence time. This restricts the available air time per 
device to roughly 36 s per day, which makes LoRa unsuitable 
for high data rate applications. LoRa devices usually can trans-
mit over multiple channels (defined by diff erent center frequen-
cies) and utilize channel-hopping algorithms that aim to find the 
best possible channel on which to transmit the data in order to 
try and mitigate this drawback. 

Using a lower frequency than Wi-Fi and cellular has the 
benefit of granting a higher penetration through walls and ulti-
mately a high maximum range. In the range study carried out 
by J. Petäjäjärvi et al. “On the Coverage of LP-WANs: Range 
Evaluation and Channel Attenuation Model for LoRa Technolo-
gy” (2015), this is quoted to be up to 15 km in rural open space 
and 2–5 km in urban environments, with increased range if 
there is direct line of sight between devices and gateways. 

LoRa has a number of configurable parameters that give 
flexibility to the designer in regard to the maximum achievable 
communication range, power consumption, and data rate. 
• Spreading factor (SF), which is related to the number of chirps 

that are used to encode a single bit of information in the 
modulation of the message. Larger spreading factors increase 
the signal-to-noise ratio (SNR) and therefore the communica-
tion range, at the cost of slower transmission and longer air-
time for each packet. Depending on the SF in use, data rate 
ranges from 0.3 kb/s to 27 kb/s [3]. 

• Bandwidth (BW), which is the range of frequencies over 
which the LoRa chirp spreads. Higher bandwidths increase 
the data rate of packets but reduce communication range. 
The most common bandwidths available are 125, 250, and 
500 kHz. 

• Coding rate (CR), which refers to a programmable number 
of bits that are added to the packet header in order to per-
form forward error correction techniques. Larger coding rates 
increase resilience to interference, but also increase packet 
length, air time, and energy consumption [4]. 

loraWan mac laYer 
LoRaWAN is one of the available MAC layer protocols built 
upon LoRa. It has recently gained a lot of attention due to its 
characteristics, which make it particularly suitable for IoT. 

LoRaWAN networks comprise three main elements: 
• Nodes: sensor boards responsible for collecting data or imple-

menting instructions via actuators through communication 
with gateways

• Gateways: Internet-connected devices that forward the pack-
ets coming from the nodes to a network server acting as a 
logically invisible bridge between nodes and network

Figure 1. Comparison of main IoT enabling communication 
technologies in terms of range, data rate, energy 
consumption, and costs.

Figure 2. Typical star-of-stars LoRaWAN network topology.

Sensor nodes Gateways Network Applications
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•	 The network server, which handles the de-duplication of 
received packets, rejection of corrupted/unwanted ones, 
as well as scheduling messages to be sent to specific nodes 
through gateways in range
A typical LoRaWAN network is organized in a star-of-stars 

topology where nodes do not have a direct connection to any 
single gateway but instead transmit to all gateways in range. 
Figure 2 shows an example of topology for a hypothetical smart 
agriculture application, where different sensing nodes can com-
municate with different gateways (fixed or mobile based on 
vehicles or drones). This is different from mesh topologies typi-
cally utilized by wireless sensor networks (WSNs), where clusters 
of devices communicate to sinks they have to associate with 
directly, and which in turn forward the message on. These mul-
tihopping topologies effectively trade off power efficiency for 
higher transmission range. Thanks to this limitation, the estimat-
ed lifetime of a single battery-powered LoRaWAN connected 
sensor device is expected to be years, which results in cheaper 
deployment and maintenance as well as an overall simplified 
network design [1], [2]. The maximum recorded range achieved 
by an unconfirmed uplink message using LoRaWAN is 702 km. 

The gateway relays the data it receives from all the nodes in 
range to the network server associated with each node. Com-
munication is bidirectional, so devices can send data to the net-
work via uplink and receive instructions via downlink. However, 
the uplink direction is strongly favored. Direct communication 
between two nodes is not available with LoRaWAN, requiring 
the data to pass through a gateway in both uplink and down-
link for this to be achieved. These limits preclude the use of 
LoRaWAN to time-critical, low-latency applications. 

Other custom protocols can be built on the LoRa PHY layer. 
LoRaBlink was developed in [5] to achieve multihop, robust, 
and low-latency communication, while keeping a low ener-
gy profile. Symphony Link™ is another protocol that aims to 
resolve the problem of scalability outlined by different research-
ers by implementing a range of different features [6]. 

LoRaWAN: State-of-the-Art Applications for 
Smart Agriculture

Based on the characteristics outlined so far, LoRaWAN technol-
ogy has the potential to be applied effectively to many Industri-
al IoT (IIoT) applications. In these scenarios only small amounts 
of data need to be analyzed and monitored, with the additional 
requirement of sending sporadic downlink messages. In an agri-
tech context in particular, sensor nodes usually are interested 
in monitoring environmental factors such as temperature and 
humidity, as well as health conditions of livestock and chemical 
conditions of soil and plants. These are often factors that do 
not require up-to-date real-time monitoring, but need only an 
update every few minutes. This effectively works around one of 
the main drawbacks of the LoRaWAN technology, its limitation 

in maximum data rate. Downlink messages typically are used 
to activate simple devices such as solenoid valves and switches 
like a sprinkler to perform watering of a specific portion of a 
field or a dispenser to refill food and water troughs for livestock. 

The most common IoT applications for agri-tech currently 
being researched and developed include: 
•	 Automatic irrigation control: optimizing water usage in farm-

ing by monitoring soil condition and intelligently activating 
sprinklers

•	 Large and small arable farming: including soil monitoring, 
chemical analysis for pests and disease, machine and agri-
cultural manned and unmanned vehicle (drones) monitoring 
and control

•	 Livestock and animal welfare: including movement monitoring 
to diagnose and prevent diseases such as lameness, eating 
and drinking habits, and beehive monitoring

•	 Greenhouse and indoor horticulture: monitoring environ-
mental factors to ensure optimal atmospheric conditions are 
maintained throughout the year
Generally, academic papers that focus specifically on out-

door, LoRaWAN-enabled agri-tech applications are mostly 
resolved as proof-of-concept small-scale testbeds for future 
research, or investigations on the feasibility and performance 
of the protocol for different use cases. Table 1 includes details 
of some of the most recent LoRa-specific IoT deployments and 
some metrics where specified. 

On a commercial level, a host of IoT projects have been 
launched in recent years, mostly in the form of crowd-funded 
do-it-yourself (DIY) applications ranging from smart gardening 
gadgets to attempts to automate lawn irrigation. They usually com-
bine LoRaWAN (when used at all) with other technologies such 
as cellular and Wi-Fi, and are almost exclusively small-scale deploy-
ments. In this early stage of the technology, large-scale deploy-
ments are still manly carried out by organizations that can sustain 
the capital cost of setting up a network as well as providing sub-
scription to servers and data analysis tools run by third parties. 

Among the successful examples of such a large-scale 
LoRaWAN-enabled deployment is the case of livestock moni-
toring in New Mexico, as reported by Actility, which also exem-
plifies why LoRaWAN is to be preferred in these scenarios over 
other network protocols. The amount of cows to monitor (up 
to 7000) as well as the vast areas these desert ranches occupy 
(10,000 to 20,000 hectares) makes the process of gathering 
information about livestock well-being complicated and expen-
sive in terms of time and resources. This is partly due to the 
amount of animals and area to cover, but also down to stretch-
es of land being only accessible via horse. While historically the 
cattle was tracked using conventional GPS devices, the lack of 
consistent cellular coverage over the whole grazing area pre-
vented effective tracking of the cattle’s location. A LoRaWAN 
off-the-shelf solution was able to overcome these problems 
thanks to its long range and high coverage, while guaranteeing 
a battery life of 6–7 months to various devices monitoring water 
level, temperature and GPS position. Where cellular technology 
failed, LoRaWAN helped increase productivity and security 
while also reducing the amount of manual work required by 
business owners. 

Moving forward, it is fundamental to try and grow the com-
munity of LoRaWAN users as this will lower the costs associ-
ated with setting the network infrastructure. As gateways and 
nodes do not have a 1-to-1 direct connection, a single gateway 
allows users in its operating range to leverage the established 
public or private network for their own application. Examples of 
the benefit this will bring to the community are the case study 
of Lebanon’s Château Kefraya or the Devonian Gardens in Cal-
gary, Canada. Here, thanks to existing nationwide and citywide 
IoT networks, sensors monitoring, among others, soil tempera-
ture and moisture, water temperature, humidity, and luminosity 
could be set up within a rapid timeframe and with a reduced 
capital investment [15, 16]. 

Figure 3. Typical downlink and uplink contents in LoRaWAN-
enabled agri-tech deployments. 
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LoRaWAN: Limits and Outstanding Research
Limitations 

Researching the limits of LoRaWAN involves investigating the 
effects on communication reliability and maximum range upon 
altering the PHY layer factors of the LoRa protocol: spreading 
factor, bandwidth and coding rate, which are directly correlated 
to the time on air of the packet. 

Some research indicates that protocol bandwidth configura-
tion has the largest effect on communication range, while other 
work suggests that the spreading factor choice does instead. 
We conclude that this debate remains unsolved, while other 
factors such as temperature, humidity, and antennae position 
are widely understood to affect communication performance. 

Along communication range, packet delivery ratio (PDR) is 
a fundamental metric to determine how well a sensor node in 
an IoT network is performing. It is defined as the percentage of 
packets received over the total amount of packets sent by the 
end device. 

Studies have been published analyzing these two metrics in 
different environments including urban, mountainous, outdoor 
and rural, as well as indoor. For these, the data content of the 
packets is usually not as important as the metadata related to 

the packet transmission, which includes information like SNR 
and received signal strength indicator (RSSI) at the receiving 
gateway. 

In research by S. Wang et al., “Long-Term Performance 
Studies of a LoRaWan-Based pm2.5 Application on Campus” 
(2018), an analysis of air quality on campus ground is carried 
out, with data sent every 72 s for over 12 months using 22 
different nodes with different altitudes and distances from the 
gateway. Interestingly, devices on rooftops have a lower PDR 
despite having comparable SNR as devices on lampposts, clos-
er to the ground, suggesting that the SNR is not directly related 
to the likelihood of a packet being successfully received and 
decoded. Including additional gateways in the setup, however, 
results in increased PDR across the whole deployment by about 
10 percent. 

In “Evaluation of LoRa LPWAN Technology for Remote 
Health and Well Being Monitoring” by Petäjäjärvi et al. (2016), 
a gateway is placed inside the University of Oulu’s campus and 
a single moving sensor is set up to transmit a packet every 5 s 
at +14 dBm. The setup is entirely composed of commercially 
available products, and results show that using the maximum 
spreading factor of 12 brings a PDR of around 96 percent. The 
authors found, however, that the packets were only getting sent 

Table 1. LoRa-enabled agri-tech applications in the literature.

Ref. Application Number of nodes Coverage SF BW
Operating 
frequency

Payload 
Length

Payload content
Nature of 
research

[7] Drip irriga-
tion control

Up to four 
actuators per 
node

— 10 125 
kHz

433 
MHz

Max. 
9 B — Testbed

[8]
Mushroom 
house mon-
itoring and 
control

Three per 
mushroom 
house plus 
actuators

— — — — — Temperature, hu-
midity, and CO2

Testbed

[9] Maize crop 
monitoring 27 648 m2 — — 868 

MHz —

Soil moisture and 
temperature, light 
intensity, humidity, 
ambient tempera-
ture and CO2

Costs and 
power 
consumption 
evaluation

[10] Tree Farm 
monitoring — Up to 

200 m
7 
to 
11

125, 
250 
kHz

915 
MHz 9 B

Temperature, 
humidity, solar 
irradiance, flame 
sensor

Environ-
mental 
performance 
analysis

[11] Irrigation 
control 

Actuators 
only

Up to 8 
km 12 — 433 

MHz — — Proof of 
concept

[12] Grape farm 
monitoring

Three sensor 
nodes and 
one actuator 
node

1 km 
radius — — — —

Air temperature, 
humidity, leaf 
wetness and soil 
moisture

Proof of 
concept

[13]
Water 
troughs 
monitoring

Five physical 
sensor nodes, 
100 simulated 
nodes

0.5 to 
2.7 km — — 915 

MHz 26 B — Proof of 
concept

[14] Horse stable 
monitoring One node 70 m 7 125 868 

MHz 2 B Temperature and 
humidity

Use case 
analyses

[14]
Agricultural 
land moni-
toring

One sensor 
buried 10 to 
60 cm in soil

40 to 
350 m

7 
to 
10

125 868 
MHz — Conductivity and 

soil temperature
Use case 
analyses
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every 13 s instead of the programmed 5. This is because of the 
limitations imposed by law on the maximum data rate in the 
unregulated LoRaWAN frequency bands and ultimately will lead 
to scalability issues. 

In fact, as demonstrated by [3], in deployments with 250 to 
5000 devices and 3 available channels, not only are the devices 
constrained to a transmit time that would not exceed the reg-
ulations, but also collisions prevent most of the packets from 
being successfully received and decoded. Because of this, the 
PDR reduces to values below 20 percent as the number of 
nodes increase. The problem of collision between packets was 
also proven by various researchers making use of mathematical 
models for signal propagation and software simulations. 

Research Challenges 
To answer the reduction in PDR that hampers the scalability 
requirement of any LoRaWAN future application, M. Cattani et 
al. [4] find that it is best to send data using the fastest and more 
fragile configuration available rather than increasing resilience 
and air time while trading off speed. Provided that a retransmis-
sion function is implemented to handle missed packets and the 
configuration is such that the deployment exhibits high enough 
initial PDR (greater than 20 percent), this should yield the maxi-
mum effective throughput. On the other hand, in “Performance 
Analysis of LoRa Radio for Indoor IoT Applications (2017), E. 
D. Ayele et al. carry out indoor performance analysis at the 
Twente University Campus and reaches the conclusion that the 
SF should always be increased to minimize the effect of interfer-
ence and increase PDR across larger distances. Somewhat simi-
lar research is brought forward by A. Hoeller et al. in “Exploiting 
Time Diversity of LoRa Networks through Optimum Message 
Replication” (2018), where each message is sent a number 
of times, increasing the probability that at least one of those 
packets is successfully received and decoded by a gateway. This 
seems to be particularly beneficial for low density networks. 

Another avenue of research toward resolving the issue of 
scalability and packet collision is to investigate the recently 
deployed adaptive data rate (ADR) mechanism for LoRaWAN 
v1.1. While its performance has yet to be fully characterized, its 
goal is to maximize both battery life and network capacity by 
dynamically altering SF and transmission power of each node. 
In “EXPLoRa: Extending the performance of LoRa by suitable 
spreading factor allocations” (2017), F. Cuomo et al. present two 
different algorithms that can assign different spreading factors to 
the nodes around a single gateway. Somewhat in contrast with 
the proprietary ADR, which assigns the lowest possible spread-
ing factor that still yields a good communication link between 
node and gateway, in their work they aim towards a smart and 
even spreading factors distribution among the nodes. Due to 
the SF orthogonality, uplink messages sent with different spread-
ing factor can be received by a gateway at the same time on 
the same channel, hence eliminating a possible collision. The 
first approach is based on allocating the full range of available 
spreading factors (7–12) to all sensor nodes. This involves poten-
tially allocating a higher-than-needed SF to some nodes, but by 
varying the values, the overall probability of collision should 
decrease. The second approach is an improvement on the first 
one, taking into account other metrics such as time on air and 
balancing spreading factors between groups of potential inter-
feres. The algorithms were tested in simulation and showed an 
overall increase in PDR against the standard ADR algorithm, 
especially for densely populated networks with fast data rate. 

Generally the consensus is that the scalability of 
LoRaWAN-enabled applications is limited with current state-
of-the-art technology [3, 4, 17]. Part of the problem is the fact 
that downlink availability is itself constrained by the number of 
nodes a single gateway services. This prevents time-sensitive 
applications and also limits the possibility for solutions that rely 
on the feedback of metrics regarding the communication link 
from the gateway. As there is no node-to-node communication 

possible in LoRaWAN, messages between nodes need to be 
necessarily relayed via a gateway. With gateways subjected to 
the same duty cycle restrictions as nodes, this could hamper 
such solutions in a real-life, non-simulated setting. 

Future Research
The following research challenges emerge from the literature 

reviewed: 
•	 The development of better adaptive data rate mechanisms, 

based on dynamic spreading factor and other parameters 
allocation to increase system scalability above the current 
limits [18]

•	 The development of retransmission and message duplica-
tion mechanisms as an ideal way to deal with collisions and 
increase PDR as opposed to increasing the spreading factor 
and time on air [4]

•	 The reduction of costs and the standardization of hardware 
and software for LoRaWAN development, which should pro-
mote its widespread use

More gateways being online results in an increased downlink 
capacity for each. This would increase the range of feasible 
solutions for the issues outlined in this review, all the while 
reducing collisions [17]. 

In order to address these issues, several universities and 
research centers are developing testbeds for development and 
validation, including our group at the University of Glasgow. 
The hardware comprises mostly elements purchased through 
The Things Network (TTN). The Things Network is a commu-
nity-made website that provides an open source back-end for 
IoT applications. Three “The Things UNO” nodes are currently 
set up to monitor air temperature, humidity, and light intensity 
alongside soil moisture (four variables) for three potted plants, 
positioned in three different rooms situated on various floors 
of the University of Glasgow Engineering building, James Watt 
South. The gateway is also positioned within the building. The 
vision for this testbed is to expand the number of sensing nodes 
and gateways to develop and validate different management 
and data processing algorithms, moving toward adaptive and 
cognitive implementations that can dynamically self-organize to 
cope with the network’s changing requirements. 

Conclusions
LoRaWAN has been under the spotlight in recent years due to 
its suitability to be the standard communication protocol for IoT 
deployments. It provides long communication range and low 
energy consumption by drastically reducing the avail.able data 
rate. In this article, the LoRaWAN protocol was briefly intro-
duced alongside some of the agri-tech applications enabled by 
it. LoRaWAN’s limitations were also analysed. The biggest issue 
to future development of large-scale Lo-RaWAN applications 
is the effect of packet collision on the deployment scalability. 
As shown in literature, increasing the number of devices in a 
deployment with limited gateways drastically reduces the num-
ber of packets successfully received and decoded. Duty cycle 
limitations apply to both sensor nodes and gateways making 
many of the proposed solutions for packets collision which rely 
on downlink, such as rescheduling mechanisms or intelligent 
and dynamic spreading factor allocation, harder to implement 
or simply not viable. 

Many research groups, including the authors’, are working 
on developing LoRaWAN enabled smart agriculture test beds 
to improve our understanding of the impact of the presented 
limitations using experimental test data, and moving towards 
building predictive models and adaptive network management 
algorithms for smart farming using the data collected. 
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Advancing IoT-Based Smart Irrigation

Introduction 
Nowadays, the Internet of Things (IoT) has already left the 
state of an idea and has been applied in practical projects. 
The technical and application challenges are enormous since 
IoT platforms enable complex real-time control systems that 
combine the use of communication infrastructure, hardware, 
software, analytical techniques, and application knowledge 
combined into multiple layers. One of the key technical chal-
lenges is to realize the expected IoT impacts on systems, as 
IoT allows them to become service mashups, connecting 
things as services. Consequently, system development will 
become dynamic plug-and-play interoperable service com-
position, and system logic will become service orchestration. 
Overall, IoT allows solution flexibility to fulfill custom applica-
tion needs. 

In the context of agriculture, irrigation is a key task to guar-
antee adequate crop yield by avoiding under- and over-water-
ing. Moreover, it is an important cost driver, as the energy to 
transport water and to operate irrigation equipment is costly 
— in some places, even the water itself is costly. Smart irrigation 
seeks to apply IoT and analytical methods to leverage precision 
irrigation, aiming optimal cost effectiveness to the farmer by 
flowing the water in the proper amount to places where and 
when it is needed. 

In this article we introduce the concept of a flexible IoT-ma-
chine learning (ML) platform, wherein IoT and ML components 
are connected as services in an application context, allowing 
adaptable solutions to fulfill application needs. This approach 
benefits IoT professionals, as they can easily develop and 
deploy complex solutions involving devices, communication, 
data management, analytics, and application elements. 

In particular, our work on this concept has resulted in a 
platform called SWAMP1 that implements our flexible IoT-ML 
architecture toward the smart irrigation problem. This allows 
highly customizable soil water management solutions, involv-
ing flexible connectivity among data, physical models, and 
ML algorithms oriented to solve application key tasks, such as 
water need estimation and irrigation planning and operation. 
We call this concept flexible data-driven soil water manage-
ment, which in practice allows suitable solutions to a great 
variety of soil, plant, and regional weather characteristics. This 
approach benefits the farmer, as a highly customizable smart 
irrigation solution may reduce water and energy usage and 
mitigate crop yield risks as it keeps soil water content at healthy 
levels for plants. 

In the remainder of this article, we compare our approach to 
other practical IoT research projects, provide details on our flex-
ible platform applied to precision irrigation, describe our flexible 
ML approach to address precision irrigation tasks, highlight 
the potential impacts of our approach to IoT professionals and 
farmers, and summarize our main contributions. 

Related Work 
In recent years, different academic and commercial initiatives 
have emerged, aiming to incorporate IoT and ML into the agri-
culture. IoF2020 (www.iof2020.eu)2 and Dragon (www.data-
dragon.eu) are two projects funded by the European Union 
for developing IoT platforms for agrifood. IoF2020 is organized 
into five sectors that adopt different solutions: arable crops, 
dairy, vegetables, fruits, and meat. Arable crops use sensors to 
monitor production and intelligent analysis of images to assess 
crop development. GPS data from cattle neck collars or live-
stock movements monitor dairy chain, and ML is used for early 
lameness detection. IoT devices track the production chain of 
vegetables, fruits, and meat. Dragon aims to integrate IoT data 
with phenomics, genomics, and metagenomics data associated 
with ML methods to increase production. 

Other recent academic studies include a platform for preci-
sion agriculture and experimentation in turmeric cultivation [1]. 
The platform provides a graphical interface for connecting sen-
sors and actuators and uses analytical methods to analyze the 
delay of messages. Another study uses thermal images generat-
ed by drones and transmitted throughout a cloud-fog system to 
identify non-uniform irrigation zones [2]. 

Commercial companies are also putting some of these ideas 
into the market. Examples include Agrosmart (www.agrosmart.
com.br) in Brazil, Agricolus (www.agricolus.com) in Italy, and 
Cropmetrics (www.cropmetrics.com) in the United States. 
Among other technologies, they use soil sensors, weather sta-
tions, and weather forecasts for irrigation advising. However, 
their underlying approaches for water need estimation and irri-
gation optimization and operation are not available. 

Despite the richness of recent approaches adopting IoT in 
the agri-food chain, they do not yet fully explore: (a) the archi-
tectural aspects to hold flexible solutions involving IoT and ML 
components and (b) the potential of the collected data for a 
more accurate analysis of water needs. In this article, we advo-
cate that data-intensive methods provided by ML algorithms, in 
combination with IoT technologies and weather-soil-atmosphere 
simulations, can provide a considerable impact in precision irri-
gation and its solution deployment. 

A Flexible IoT-ML Platform for  
Smart Irrigation 

The success of next generation systems for precision irrigation 
based on IoT technologies coupled with intelligent ML data 
processing techniques depends on the ability of the solution 
to adapt to different contexts found in farms. A flexible IoT-ML 
platform must allow different deployment configurations of 
hardware, software, and communication technologies, custom-
ized to deal with the requirements and constraints of different 
settings, countries, climate, soils, and crops. Here we advo-
cate that an IoT-ML infrastructure for providing smart irriga-
tion services be defined by two complementary dimensions, 
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namely core components and deployment locations. Core com-
ponents are a set of software, hardware, and communication 
technologies, such as soil moisture sensor probes, long-range 
WAN (LoRaWAN) [3], Message Queuing Telemetry Transport 
(MQTT) [4], LoRa Server (www.loraserver.io), FIWARE [5], and 
SEPA [6], as well as specific services for water need estimation 
and irrigation planning and operation. 

On the other hand, deployment locations define where core 
components can be placed, and how they communicate with 
each other. This generates distinctive configuration scenarios 
for different deployments. Locations follow an IoT computing 
continuum, composed of things (sensors and actuators), mist 
(field nodes such as radio gateways), fog (farm on-premise com-
puting infrastructure), cloud (data storage and processing), and 
terminal (a smartphone, tablet, or laptop where the end user 
interacts with the application). The five instances of this contin-
uum define the end-to-end information path starting with data 
collected by sensors up to commands executed by actuators. 
The five instances might not necessarily be present in all sce-
narios. Rather, depending on farm characteristics, requirements, 
and constraints, fog or cloud may not be present. This feature 
provides additional flexibility to the IoT-ML platform, as the 
differences are understood, and the platform adapts to the farm 
and not the opposite. 

Figure 1 depicts the IoT infrastructure for providing smart 
irrigation services, composed of core components and deploy-
ment locations. In smart agriculture, each farm has particular 
objectives and characteristics, so different deployment config-
urations may be used, representing instances of the same plat-
form. Figure 1 presents a simpler version of the deployment of 
the IoT-ML platform where locations are thing, mist, cloud, and 
terminal (i.e., no fog is used). This configuration was chosen for 
simplicity and a farmer’s choice of not hosting any on-premises 
infrastructure. 

In Fig. 1, the numbers in blue circles represent a simplified 
sequence of the end-to-end data flow through this deployment 
of the IoT-ML platform. Soil moisture sensors send data via 
LoRaWAN to the gateway installed in the mist node. Partic-
ularly for the SWAMP Project, we have built a custom-made 
three-depth soil moisture sensor, but also use commercial 
sensors from Libelium (www.libelium.com) and Meter (www.
metergroup.com). A weather station also sends data to the 
mist node via a serial wired interface (1). From there, the mist 
node forwards data via 4G through the Internet directly to the 
cloud (2). 

Within the cloud, sensor data are treated by the LoRaWAN 
server and sent to the IoT protocol translator (3), such as a 
FIWARE IoT Agent. Weather data goes directly to the IoT 
protocol translator using the Ultralight 2.0 protocol, as well 
as weather forecasts obtained from an external service. The 
Translator converts the three different types of input data — 
soil, weather conditions, and weather forecast — into the for-
mat of the particular IoT underlying platform transmitting them 
to the context broker (4) (e.g., NGSI JSON format for FIWARE 

Orion). Once data arrives at the context broker, it is forward-
ed to time series storage (5) that makes it available for fur-
ther processing (e.g., FIWARE QuantumLeap using CrateDB), 
where the first part of the end-to-end data flow ends. Here, 
depending on the volume and velocity of data, the time series 
storage may be replaced by a distributed data pipeline (e.g., 
Apache Kafka) connected to a big data processing system 
(e.g., Apache Spark). However, for most smart agriculture sce-
narios dealing with individual farms with hundreds of sensors, 
time series storage is a lightweight solution that provides ade-
quate performance. 

The water need estimation component obtains soil mois-
ture, weather conditions, and weather forecast data from the 
time series storage (6) to generate ideal crop water need esti-
mates. Water need estimation is further divided into physical 
and ML models, further explained in the next section. The 
estimates are in turn used by irrigation planning to generate 
an optimized and real plan that is aware of different physical 
and financial constraints (7). Farmers are shown the irriga-
tion plan via the Farmer App (8) and approve or change the 
irrigation plan that is sent back to irrigation operation (9), 
which controls the irrigation system. From there, irrigation 
commands follow the way back to the mist going through the 
context broker (10), IoT protocol translator (11), and Inter-
net/4G (12). Finally, irrigation commands reach sprinklers, 
pumps, and valves (13). 

Should the fog be present in a different scenario, the end-
to-end communication would be preserved with small chang-
es, as some components would be deployed on-premises in 
the farm office where the fog node is located, such as the 
LoRaWAN server. This scenario includes the direct operation of 
the irrigation system. In alternative scenarios, the irrigation plan 
either interacts with existing third-party irrigation systems (e.g., 
Netafim — www.netafim.com — or Focking — www.fockink.ind.
br) already installed on the farm or even used by farmers to 
operate the irrigation systems manually. These options for inter-
acting with an irrigation system are common, and we assume 
they are generic enough to represent an IoT ecosystem for 
smart irrigation. 

Flexible Data-Driven Soil Water Management 
Over the last decades, data-driven soil water management has 
been accomplished using physical models3 or triggering soil 
moisture sensors data4 [7]. However, as IoT enables more abun-
dant data, with major spatial and temporal granularity and low 
latency, it increasingly allows the rise of data-driven approaches. 
Here, a key challenge is how to make all analytical techniques 
(e.g., physical models and ML) available to work together in a 
flexible IoT platform, considering that each crop, type of soil, 
and region may demand a different solution. In this sense, our 
work aims to show the roles that these analytical techniques 
can play in soil water management, and how they can be flex-
ibly assembled together. Our approach is based on two main 
characteristics: 

Figure 1. IoT-ML platform overview and end-to-end data path for a smart irrigation scenario.
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.	 Solution flexibility: Modularized components are integrated as 
services in the IoT platform, allowing solution flexibility.

.	 Increased ML relevance: Analytical solutions can be assem-
bled from traditional physical approaches, and modern 
ML and simulation ones, and even by combining them. 
Benefits of this approach are not only improved irrigation 
plans, but also self-improved platforms that learn from 
experience. 
Soil water management is performed in two phases, namely 

water need estimation and irrigation planning. 

Water Need Estimation 
The precision irrigation problem can be modeled as the soil 
water balance system at the root zone, where the soil water 
content is the result of the balance between water content 
level and a series of mechanisms that make this level increase 
or decrease (soil water dynamics) [8]. IoT provides the ability 
to monitor water content levels and dynamics, while soil water 
management systems seek to maintain water content in an opti-
mal range [7]. 

Figure 2 depicts the water need estimation process, divided 
into two key activities: 
.	 Soil water content and dynamics estimation: This consists of 

estimating soil water content and dynamics through:
	 — Direct measurement of soil water content, rainfall, irriga-

tion, and so on
	 —Physical models of soil water dynamics applied over the 

collected data (weather data mainly) and soil and crop char-
acteristics

.	 Soil water need forecast: This consists of calculating soil water 
content forecasts and water need forecasts for each moment 
of a planning horizon, using techniques such as simulation 
and ML algorithms:

	 — Simulation is appropriated when working with physical 
models, iteratively applied to simulate future data points [9].

	 —ML takes advantage of data from multiple time series (soil 
moisture, soil water balance, soil characteristics, and weather 
data) of direct sensor readings or from variables derived out 
of physical models. Weather forecast data, provided by exter-
nal services, can also be used. Different multivariate forecast-
ing methods can be used to handle these multiple time series 
[10, 11]. 
The process depicted in Fig. 2 allows flexibility once it allows 

different components combinations, as they are implemented 
as services in the platform. It is also possible to customize each 
combination, as they have numerous options inside them (i.e., 
different physical models and ML techniques). 

As an example, the SWAMP project provides 
two customized analytical solutions among all 
combination possibilities to fit the characteristics 
and needs of different pilots. One of them, called 
CRITERIA-1D [9], uses physical models and sim-
ulation, wherein soil water dynamics models 
(physical models) are the input to soil simula-
tion that generates soil water content and water 
need forecasts. Another solution uses direct mea-
surements, physical models, ML, and simulation, 
wherein the main input is direct measurement 
of soil moisture enriched by an evapotranspira-
tion5 model (physical model) [7] as the main soil 
water balance contributor. ML techniques6, such 
as Panel VAR [10] and RNN-LSTM [11], are used 
for the processing of soil water content and water 
need forecasts, and simulation to test alterna-
tive irrigation scenarios. Note that the latter uses 
Panel VAR and RNN-LSTM, respectively, a tra-
ditional and a cutting-edge technique for time 
series, thus highlighting the solution flexibility in 
exploring different ML techniques as they gain 
relevance. 

Irrigation Planning and Operation 
The water need estimation models provide what can be called 
the ideal irrigation. There are, however, other aspects that 
need to be considered when conceiving an actual irrigation 
plan, that is, a plan that can be put in place in the farm, which 
include: 
.	 Water availability : Water scarcity is a problem in vari-

ous parts of the planet. Water quotas or supply sched-
ules might not allow the ideal amount of water to be 
irrigated in time. If the needed amount of water is not 
available, the irrigation plan should allocate the existing 
water so that the best economic return to the farmer is 
achieved. 

.	 Costs of irrigation: Even if the water comes from private res-
ervoirs, irrigation is not free. Pumping the water to the fields 
consumes energy, and its cost has an impact on the farmer’s 
bottom line. For example, in certain regions of Brazil, the 
energy bill can account for up to 30 percent of the produc-
tion cost. A cost-aware plan should avoid irrigation when 
tariffs are higher. 

.	 Limitation of the irrigation systems: Irrigation methods 
differ in how much of the irrigated water actually reaches 
the plants : furrow irrigation has 60 percent efficiency, 
while sprinkler irrigation reaches 75 percent [12]. Other 
aspects of the irrigation infrastructure need to be consid-
ered when planning: maximum pumping capacity of the 
farm, uniformity of irrigation, and soil variability, among 
others. 
Figure 3 presents a modular approach that separates irriga-

tion planning from operation, completing the data flow shown 
in Fig. 2. There are three main modules: 
.	 Irrigation planning: Computes the timing and water volume 

of irrigation events that best address the crop needs, while 
being aware of operational constraints and economic inter-
ests. Linear and nonlinear programming techniques can be 
used, as well as approximate solutions such as those provid-
ed by metaheuristics [13]. 

.	 Irrigation operation: Communicates with the sensors and 
actuators installed in the farms, sending commands and 
monitoring the operation to ensure adherence to the plan. 
It controls the opening and closing of valves, the pressure 
at pumps, and so on, using the underlying IoT communica-
tion infrastructure to send commands. The use of standard 
IoT interfaces and protocols enables on-demand addition of 
sensors and actuators, smoothing the transition toward fully 
automated irrigation. 

Figure 2. Water need estimation process.

Figure 3. General data flow between irrigation services.
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.	 System Model: Computes an updated model of the system 
behavior as far as irrigation is concerned. IoT devices (e.g., 
soil sensors, water meters) in combination with data-driven 
techniques enable estimating the actual irrigation efficiency, 
and planning accordingly. 

Discussion and Lessons Learned 
Physical Models vs. Machine Learning 

The increasing use of IoT in precision irrigation brings spatial 
and temporal accuracy gain, as sensors can potentially be 
placed in all manageable locations on a farm. Thus, site-specific 
particularities can easily be considered, leveraging the explo-
ration of data-driven approaches. In this context, the question 
of what would be the right combination of techniques to deliv-
er adequate soil water management emerges. Do traditional 
approaches, such as using physical models or triggering soil 
moisture sensors data [7], still take place? Or is this the time 
to avoid physical models and use cutting-edge ML algorithms 
acting directly to data? 

Our vision is that there is no unique ideal analytical approach 
for all cases, as crops differ significantly in irrigation methods 
and in crop, soil, and regional weather characteristics. More 
than that, depending on crop culture or region, not all data fea-
tures might be available or cost-effective. However, a discussion 
of the roles traditional and ML approaches can play in effective 
solutions can provide guidelines to discern the most appropri-
ate alternatives to each application case. 

Physical models have been extensively used in irrigation, 
bringing implicit agronomic knowledge, as they connect raw 
data features to specific and relevant features. Nevertheless, 
there are important limitations, as general models involve sim-
plifications that often ignore local particularities, while site-spe-
cific models work well only regionally, and few models have 
adequate performance levels for different regions. Finally, the 
few models of general application that are flexible enough to 
address different conditions [7] are often complex and require 
many data features that are difficult to obtain. 

On the other hand, pure ML approaches applied directly 
to IoT data seem promising, as cutting-edge deep learning is 
capable of capturing implicit knowledge from raw data in many 
application areas, as well as delivering highly customizable 
results [14]. For this reason, we believe that ML approaches 
will be extensively explored in scientific research in the coming 
years, allowing the emergence of truly cognitive smart irrigation 
systems. As such, our architecture approach, based on core 
components and deployment locations, gives the necessary 
flexibility not only to build customizable IoT-ML solutions, but 
also to assemble customizable data-driven solutions. For smart 
irrigation, we have shown that it is possible to use various com-
binations of analytical tools, including mixes of physical models, 
simulation (traditional approaches), and ML techniques. 

As ML gains momentum, existing physical models may lose 
room because ML could implicitly capture from raw data the 
same information physical models provide. Instead, IoT’s contin-
uous growth might enhance the utilization of physical models, 
as they can calculate their outputs with better spatial and tem-
poral granularity. Also, IoT tends to promote not only physical 
models but also ML. In summary, a futuristic vision may be 
that ML is well positioned for IoT-based applications. However, 
although ML seems to have a promising future for smart irri-
gation, we are still at the beginning of its exploration, and we 
need reliable data that now is still generated by physical models 
or a combination of data and ML techniques. 

All in all, considering the advantages and disadvantages of 
each side, we advocate that current solutions consider using 
both physical models and ML algorithms — physical models 
serving as feature engineering for ML approaches. We believe 
that physical models can aggregate agronomic knowledge that 
ML algorithms eventually cannot capture yet directly from raw 

data. Finally, as different physical models can potentially cap-
ture different aspects of reality, we recommend using multiple 
physical models, even for similar tasks. Then ML will hold the 
task of capturing valuable information from the features provid-
ed by the physical models to deliver more precise water need 
estimation.

Integrating Different Stakeholders 
The approach taken is the result of a joint and largely inter-
disciplinary effort, and the authors’ ambition is to generate an 
impact on a wide community of stakeholders with the envi-
sioned innovation. On one hand, the interoperability at the 
communication level provided by IoT is a key factor to promote 
a platform culture among not-computer-scientists, as it brings 
easy node deployment, data collection, and inter-researcher 
interaction. On the other hand, only with our flexible archi-
tecture approach due to the heterogeneities embedded in the 
agricultural scenario — heterogeneity of devices and simulation 
tools, but also farms and the stakeholders themselves — can the 
barriers be properly handled. Different stakeholders speak their 
own languages: for example, soil-moisture sensor data are num-
bers for computer scientists, bits for telecommunication profes-
sionals, voltage signals for electronic engineers, while the end 
users expect volumetric soil moisture values. As the calibration 
of these sensors is soil-type-dependent, geologists, agronomists, 
and other researchers must take part in the game of this con-
text-dependent calibration process. 

Altogether, the smooth interplay between actors with differ-
ent skills and habits is a key success factor. Each stakeholder 
needs specific and mostly mobile services, with the appropriate 
human-machine interface, if we want to deploy the appropriate 
level of automation with the man in the loop, as required in 
today’s agriculture. Services need to be organized like a chain 
of tools that mutually exchange information and understand 
each other thanks to a shared information model based on 
emerging ontologies. This shared data model fosters smooth 
and sustainable innovation because the tool chain may easily 
be extended to provide new capabilities and value propositions, 
and attract new stakeholders. 

Impacts
For IoT Professionals 

Our approach incorporates the ML pipeline into the IoT con-
tinuum by using a structure of services deployed as containers 
that exchange messages through the FIWARE NGSI unified data 
model. This scheme impacts IoT platform development and 
deployment in many aspects: 
.	 Automation: The platform provides a subscribe/notify mecha-

nism for building automated data pipelines.
.	 Traceability: The storing of meta-data information about the 

model specifications and context of data used in the estima-
tion allows keeping track of model forecasts, as well as quali-
ty indicators. 

.	 Pluggability: The integration of new or updated models is 
facilitated by the unified data model, consuming data and 
producing water need estimates in a standard way. 

.	 Flexibility: The pluggability allows IoT professionals to com-
pose different data workflows flexibly by using various com-
ponents. 

. 	Hybrid environments: The architecture allows the use of dif-
ferent ML frameworks to train models, as well as hardcoded 
physical models. 
All these aspects have been allowing a relatively simple 

deployment of our platform in all SWAMP pilots, each one 
with its characteristics and different specific goals. In Italy, the 
goal is to use farm data for water management and distribution 
(i.e., to share data outside the farm to create an even bigger 
system-of-systems). In Spain, the goal is to explore the limits of 
flexibility and precision in irrigation by going into a very fine-



IEEE Internet of Things Magazine • December 201924

grained irrigation system where each sprinkler is an IoT node. 
In Bahia, Brazil, there is a large-scale use case with huge cen-
ter-pivot irrigation systems, where the goal is to decrease oper-
ational costs through improved situational awareness. Near São 
Paulo, Brazil, the goal is to improve the quality of grapes and 
wine. 

For Farmers
Currently, in modern farms that rely on physical water need 
estimation models and respect soil variability, farmers are pro-
vided with irrigation plans for long periods, such as weeks, 
months, or even the entire season. Based on their accumulat-
ed experience and daily work in the field, they continuously 
adapt the irrigation plan to avoid crops suffering from water 
stress. In this scenario, the irrigation plan plays the role of 
an offline longer-term forecast that needs to be fitted into 
the reality of the farm. In a fully automated future agricul-
ture scenario, the IoT-based smart irrigation system will pre-
cisely control every aspect of the use of water, adapting it to 
shorter-term periods according to instantaneous information 
coming from the field, which can be daily or even based on 
intra-day micro adjustments in the irrigation plan. 

Between these two scenarios — current and future — lies a 
new IoT-enabled reality that will change the way farmers face 
irrigation. In any case, a requirement is that farmers always 
control the irrigation and are provided a wealth of real-time 
information to be able to make better decisions. To this end, 
we developed a smartphone app (Fig. 4) where farmers are 
informed of immediate water needs (Fig. 4a), measured and 
forecast water balance time series (Figure 4b), and the current 
soil moisture information for a 3-depth sensor probe (Fig. 4c). 
With this real-time status of the farm at hand, and equipped 
with the optimized irrigation plans computed by the system, the 
farmer can achieve better use of the water resources without 
harming productivity. 

As the system reliability and precision increase and earn the 
trust of farmers, they can slowly give more power to the system 
to make automated decisions. In other words, the application 
will allow farmers to express policies on how to behave whenev-
er a new irrigation plan is generated. 

Conclusion
In this article, we present our flexible IoT-ML platform and high-
light its scientific contribution over related work. The platform 
allows easy solution deployment involving IoT and ML compo-
nents working in an application. Our real case is a smart irrigation 
application, where we exemplify how a solution can be built 
and customized depending on site-specific needs. Special atten-
tion was given to how the platform enables more exploration of 
ML-based solutions and on how it can positively impact IoT pro-
fessionals’ and farmers’ needs. SWAMP project pilots have just 
been deployed; they are operating properly, and data is being 
collected. The next step, expected by the end of 2020, is to ana-
lyze the data and disseminate quantitative impact results. 
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Footnotes

1 SWAMP (www.swamp-project.org) is a European Union and Brazil research part-
nership that holds a pilot project to explore alternatives for implementing IoT into 
different types of environments and irrigation systems [15]. 
2 All websites cited throughout the text have been checked at Oct. 14 2019.
3 Physical models process mainly weather data to estimate water consumption, and 
as consequence, the amount of water to be replaced. 
4 Soil moisture sensors are monitored. When the water content approaches a criti-
cal level, an automated trigger starts the irrigation process.
5 Evapotranspiration is the main water consumption physical process, combining 
evaporation from soil and plant transpiration [7]. 
6 Panel VAR (Vector Autorregressive) and RNN-LSTM (Recurrent Neural Network, 
using Long Short-Term Memory architecture) are time series machine learning 
techniques. 
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Precision Aquaculture

Introduction
Aquaculture, or the farmed production of fish and shellfish, has 
grown rapidly, from supplying just 7 percent of fish for human 
consumption in 1974 to more than half in 2016. This rapid 
expansion has led to challenges including concerns over envi-
ronmental degradation, disease and parasite outbreaks, and 
the need to efficiently manage resources to maximize produc-
tivity. These factors are pushing farms toward more efficient 
management practices aimed at the sustainable intensification 
of the industry. At the same time, innovative technologies are 
making the collection, processing, and analysis of large volumes 
of heterogeneous datasets possible. Taken together, these two 
factors are empowering a precision aquaculture framework that 
combines sensors, cloud, and analytics to enable real-time, evi-
dence-based decision making to optimize operations. 

Precision aquaculture [1] involves a variety of sensors used 
to gain insight into the farm environment, make decisions that 
optimize fish health, growth, and economic return, and reduce 
risk to the environment. This trend parallels developments in 
agriculture, where sensors and other observing technologies 
lead to enhanced insight into crop health as well as animal 
welfare. The fundamental approach has been summarized as 
a series of steps, namely observe, interpret, decide, and act 
[1]. Traditionally, many of these steps have required human 
intervention and depended heavily on farmer experience and 
intuition for correct decision and action. As farm size increases, 
however, and moves further offshore, automation is imperative 
to enable economically feasible operations.

Materialization of precision aquaculture depends on IoT 
technologies to empower management in a chaotic environ-
ment subject to the vagaries of oceans and weather. An obvi-
ous impediment is water cover, but other major obstacles exist, 
including the harsh environment, power and connectivity in 
offshore locations, large range of spatial scales involved (fish-, 
cage-, farm-, and bay-scale), and the challenges of manual inter-
vention or analysis in the ocean (where access can be regularly 
impeded or prevented by adverse weather). A fish farm has 
an imposing array of underwater chains, ropes, moorings, and 
other infrastructure, so wireless communications are essential. 
Further, the distributed nature of the industry, composed of a 
large number of small-scale aquaculture companies and sensor 
providers, poses challenges related to the integration of diverse, 
sometimes proprietary, datasets into a unified edge, fog, and 
cloud ecosystem.

Application of mature monitoring, modeling, prediction, and 
analysis tools to aquaculture farms has potential to improve 
operations and alleviate key challenges facing the industry. 
Fish feed represents 50–70 percent of fish farmers’ produc-
tion costs, while the growth rate of fish is intrinsically linked to 
feed composition and time of supply; precise management can 

link fish growth with optimal feed schedule and composition 
that minimize waste (and subsequent pollution of surrounding 
waters) and improves productivity. Disease and parasite-in-
duced impacts are a major issue for aquaculture farms, cost-
ing the industry up to $10 billion annually and having severe 
socio-economic impacts. Further parasite control treatment in 
salmon farms constitute 7.5 percent of total production costs 
[2]. Farming in the open ocean requires the ability to respond 
to natural fluctuations that impact operations, such as dissolved 
oxygen (DO) concentrations and temperatures, both of which 
act as stressors, impact feeding and parasitic rates, and even 
cause mortalities. Today, management of most of these tasks 
is conducted manually, relying on direct human observation 
or human-centric data acquisition means to observe condi-
tions, combined with decision making based on subjective 
experience. However, as real-time sensor technologies become 
more prevalent on farms, the foundation exists to transition the 
industry from ad hoc decision making based on heuristics and 
intuition to real-time informed decisions backed by artificial 
intelligence (AI) insights and IoT connectivity.

This article describes a precision fish farming framework we 
have implemented on farms in Canada, which is also rapidly 
being implemented in Europe. It is part of an ongoing effort 
to develop a prototype, open-standards-based ecosystem that 
combines monitoring, modeling, insight, and decision making 
toward an autonomous framework to manage farms. It rep-
resents a multi-disciplinary collaboration with partners from the 
aquaculture industry, academia, and technology.

What Is Precision Aquaculture?
The rapid development of aquaculture in recent years has been 
likened to a “Blue Revolution” [3] that matches the “Grain Rev-
olution” of higher cereal yields from the 1950s onward. The 
industry’s rapid growth and expansion globally, however, has 
caused concerns about negative environmental impacts, such 
as eutrophication of nearby waters and habitat alteration. In 
Europe, annual growth of aquaculture has declined to 1 per-
cent, partly because of market factors, but also because the 
industry is subject to stringent regulation regarding sustain-
able development. These factors have led to a strong focus 
on the ecological development of aquaculture in marine sys-
tems, and the promotion of terms such as “ecological aquacul-
ture” and “ecoaquaculture.” Coupled with the need for greater 
efficiencies and economies of scale to empower the sustain-
able growth of the industry, precision aquaculture focuses on 
exploiting modern technologies toward the eco-intensification 
of aquaculture farms. 

Data generated on modern aquaculture farms extend across 
a wide variety of forms. In situ sensors sample large numbers 
of environmental variables such as temperature, current veloc-
ity, dissolved oxygen (DO), chlorophyll, and salinity. Remote-
ly sensed environmental data can sample much larger spatial 
domains and can be at the bay scale — from land-based sensors 
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such as CODAR-type HF radar — or at the global scale from a 
satellite-based monitoring system. Informing on farm operations 
also requires sampling of animal variables such as size, cluster-
ing behavior, and movement, and this is typically done using 
underwater technologies such as video monitoring, hydroacous-
tic technology, and aerial drone imagery. 

Further, there are large datasets of pertinent variables that 
are generated by numerical models such as weather or ocean 
circulation products. These datasets constitute huge data vol-
umes with distinct characteristics. Integrating and extracting 
information from these disparate data sources are key to encap-
sulating the full dynamics of the farm environment and enabling 
effective management. Related data from mathematical models 
are estimates of fish growth and behavior that can be used to 
guide expected conditions and decision [4]. 

The overarching aims of precision aquaculture have been 
defined as [1]: 1) improve accuracy, precision and repeatability 
in farming operations; 2) facilitate more autonomous and con-
tinuous biomass/animal monitoring; 3) provide more reliable 
decision support; and 4) reduce dependencies on manual labor 
and subjective assessments, thus improving staff safety. Similar 
to precision livestock farming [5], precision fish farming has 
been decomposed into three conditions that must be fulfilled. 
We note that in addition to these caveats, we include sensing of 
the ambient environment (e.g., water temperature, oxygen), a 
consideration that is less important in agriculture where animals 
can be housed. The basic requirements of precision aquacul-
ture are:
•	 Continuous monitoring of animal variables (i.e., parameters 

related to the behavioral or physiological state of the fish)
•	 A reliable model to predict how animal variables dynamically 

vary in response to external factors
•	 Observations and predictions integrated into an online system 

for decision or control
Achieving these objectives is dependent on the successful 

implementation of a range of innovative technologies relat-
ed to sensors, computer vision, and AI, enabled by a readily 
interconnected edge, fog, and cloud ecosystem. Central to this 
paradigm shift from human to autonomous management is an 
IoT platform to link information from different components, 
understand current status against a desired or model-predicted 
benchmark, and return insight from data in terms of action-
able information, such as modified feeding protocol or defined 
health intervention or treatment. 

Conceptually, the cultivation of fish in the ocean has par-
allels with terrestrial livestock farming. In practice, however, 
livestock farming is more amenable toward direct human and 
animal interaction than is possible in the marine-based coun-
terpart. Modern fish farms comprise cages with up to 200,000 
fish. As farms are typically composed of 10–20 cages, and mul-
tiple farms are often co-located in a bay, the total number of 
individual fish is enormous. This precludes the direct translation 
of concepts from livestock farming, and in practice, precision 
aquaculture is a marriage of approaches developed for both 
precision livestock and grain cultivation; that is, fish are not 
managed as individuals as are cows, but are obviously more 
complex in management than plants. 

DeepSense for Aquaculture
DeepSense (http://www.deepsense.ca) is a big ocean data 
innovation environment, powered by IBM, that brings together 
academia and industry to drive growth in the ocean economy. 
A key component is the commercialization of IoT technologies 
toward better management of fish farms. Specifically, a new 
research program involving Dalhousie University, DeepSense, 
InnovaSea, Cooke Aquaculture, and IBM has been created to 
research sensor networks, big data, and analytics applied to 
fish farming in eastern Canada. Dalhousie University in Halifax, 
Nova Scotia is a global leader in the marine sciences and aqua-
culture, and home of DeepSense in the Faculty of Computer 

Science. The university collaborates with InnovaSea, also head-
quartered in Nova Scotia. Cooke Aquaculture is an international 
seafood company originating in New Brunswick, Canada, with a 
deep commitment to innovation and sustainability, cooperating 
closely in research with Dalhousie. The unique combination of 
industry, technology, and scientific expertise further positions 
Nova Scotia as a global center of ocean technology, developing 
innovative solutions to empower aquaculture operations.

Farm Monitoring
Within this precision fish farming initiative, hundreds of real-

time underwater wireless acoustic sensors have been deployed 
in Canada at multiple fish farms by Cooke and InnovaSea 
(http://www.rtaqua.com). Sensors take 100,000 measurements 
daily, analyzing 11 million data points about temperature and 
tilt, salinity, dissolved oxygen, blue-green algae, chlorophyll, and 
turbidity. Figure 1 presents a schematic of the sensor deploy-
ment that collects pertinent environmental variables within 
a cage. Additional data on fish position are provided by the 
“CageEye” acoustic system (http://www.cageeye.no), as well as 
individually acoustically tagged fish. 

All data generated on farms are communicated to IBM® 
Cloud (https://www.ibm.com/cloud), utilizing the open-stan-
dard Message Queuing Telemetry Transport (MQTT) protocol 
for data transport. For each cage, a comprehensive set of vari-
ables are collected, communicated, and updated, continuously 
informing on environmental and animal conditions.

The ocean consists of complex environmental conditions 
(tides, winds, water masses, ice) that impact farm operations, 
safety, and health of the fish. Hence, information external to 
the cage is pertinent to operations and management. Satellite 
measured observations, weather data, and numerical models 
of the ocean all generate information impacting at the farm 
scale. Real-time analysis and decision making require the abil-
ity to rapidly query and extract pertinent variables from these 
datasets. We integrate in situ and geospatial datasets using a big 
data platform, Physical Analytics Integrated Repository and Ser-
vices (PAIRS) [6], a service that processes petabytes of data and 

Figure 1. Sensor configuration within a stylized cage. Nine 
sensors were deployed within each cage (we only show five 
to illustrate approximate locations) consisting of four sensors 
at 2 m depth in each corner (north, south, east, and west), 
four sensors at 8 m depth in each corner, and one sensor at 
4 m depth in the center of the cage. This sensor density is 
for research purposes of understanding spatial variation in 
the net pen. Operational metrics related to fish position and 
behavior are estimated using the “CageEye” acoustic system 
as well as a number of individually tagged fish.
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addresses the spatial and temporal complexity associated with 
heterogeneous data integration. Built on top of the open source 
big data technologies Hadoop and HBase, PAIRS aims to accel-
erate data queries by curating and storing geospatial datasets 
from diverse sources (NOAA, NASA, ECMWF, etc.) in a scal-
able storage table that can be rapidly accessed and retrieved. 

Modeling within Precision Aquaculture
The objective of precision aquaculture is to manage the 
observed status of the farms relative to a defined benchmark 
(e.g., projected biomass). Hence, a key functionality of the IoT 
platform is the capability to manage various machine learning 
models and integrate with the different data streams coming 
from sensors, weather data, and other open sources. A range 
of machine learning and mechanistic models relate to managing 
aquaculture operations. In particular, we focus on:
•	 Mechanistic and data-driven models to predict fish health, 

biomass, and mortality based on information on feed and 
environmental stressors

•	 Predictive models to inform on outbreaks of parasitic infec-
tions

•	 Deep learning models to forecast oceanographic conditions 
multiple days/weeks in advance
Fish feed is the most expensive part of aquaculture and caus-

es environmental problems when excess product sinks to the 
bottom. Optimal supply of feed is a complex selection that 
includes feed composition, growth stage, biomarkers, and envi-
ronmental conditions. While mechanistic models have been 
developed that simulate growth rates based on feeding regime 
and environmental conditions, the nonlinear relationships and 
sensitivity to external events such as diseases or parasites have 
made prediction difficult [7]. 

A practical solution requires that prediction be based on 
observed status to maintain accuracy. One approach combines 
mechanistic models with observations using data assimilation, 
a mathematical technique that incorporates process knowl-
edge encapsulated in a physics-based model with information 
from observations describing the current state of the system 
(described schematically in Fig. 2). A precision aquaculture 
implementation can be summarized as:
•	 Dynamic process models for individual fish growth based on 

feeding regime and environmental conditions are implement-
ed.

•	 Continuous update of model state based on actual fish 
position and/or biomass as measured by the CageEye sys-
tem described earlier or the Biosonics aquaculture biomass 
monitor (https://www.biosonicsinc.com/products/aquacul-
ture-biomass-monitor/) is performed.

Within the former approach, data assimilation concepts 
have seen enormous application since the 1960s as scientists 
aimed to update models using sparse sensor observations [8]. 
As sensors become more prevalent, data-intensive computing 
is continuing to transform industries and decision making [9]. 
Leveraging the large datasets being generated on aquaculture 
farms has multiple advantages, particularly related to extracting 
insight from highly complex nonlinear processes not amenable 
to encoding within a set of explanatory equations. An obvious 
case in aquaculture is fish health and in particular parasitic out-
breaks. 

Sea lice presence in salmon farms is a complex interplay 
of hydrodynamics, lice load, temperature, and position of the 
fish in the water column. Nonlinear, opaque relationships have 
traditionally made mechanistic modeling impractical. More 
recently, IBM, in collaboration with industry stakeholders, 
has implemented a deep learning model that collates data 
from multiple sources and predicts sea-lice outbreaks, termed 
“AquaCloud.” The model was fed with data on environmen-
tal conditions and lice counts from over 2000 salmon cages 
along the Norwegian coast. Combining a dense network of 
environmental sensors and manual sampling (of lice count), 
the deep learning model provides two-week-ahead prediction 
of lice count with 70 percent accuracy [11]. Within a preci-
sion aquaculture framework, advance prediction of parasitic 
outbreaks presents opportunities for improved management 
and treatment that can reduce severity of outbreak and inva-
siveness of treatment.

Machine-learning-based models for geophysical processes 
are an active area of research. The authors recently developed 
and demonstrated a machine learning surrogate model for a 
physics-based ocean-wave model [12] The machine learning 
model yielded enormous speedup (> 5000-fold) in compu-
tational time while maintaining accuracy that was well within 
the confidence bounds of the physics-based model. In effect, 
deep-learning-based approaches enable the transition of com-
plex modeling systems from HPC to edge devices (naturally, the 
training of the models is expensive, but once trained, deploy-
ment is cheap). This approach is being extended as part of 
DeepSense with data from hundreds of sensors being fed to 
deep learning models that provide continuous prediction of 
oceanographic variables multiple days in advance. A number of 
studies have produced promising results using machine learning 
to predict pertinent variables such as ocean temperature [13]
and algal blooms [14].

From Data to Decision
The key objective of precision aquaculture is moving beyond 
data toward decision. As part of the DeepSense platform, an IoT 
network has been developed to integrate data from hundreds 
of sensors at salmon cages in Canada. This is complemented by 
a model management framework that enables tracking of mod-
els and functionalities, automatic subscription to data streams, 
and relationships between different models (geospatial, vertical 
dependencies, etc.). Efforts are ongoing to integrate this with an 
evidence-based decision platform. Currently, we focus on two 
key challenges facing fish farms:
•	 Optimizing feeding to maximize productivity and minimize 

environmental impacts
•	 Inform on health intervention practices to mitigate sea lice

Optimizing fish feed needs to consider the composition and 
schedule in response to external conditions. The objective is the 
supply of nutritionally appropriate feed at a rate and frequency 
that maximizes uptake by the fish. Some guidelines may instruct 
— such as not to feed when environmental stressors may impact 
consumption — but ultimately real-time conditions and behavior 
need to inform the decision. 

The rate of supply of feed can be related to the monitoring 
of cage biomass and activity. Namely, when monitoring activ-
ity indicates that feeding behavior has concluded (i.e., the fish 

Figure 2. Mechanistic models contain errors that increase with 
time due to model imperfections and deviations of forcing 
conditions from reality. Data assimilation minimizes these 
errors by correcting the model stats using new observations 
(from [10]).
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move away from the surface where feed is supplied), feeding is 
stopped to prevent waste and environmental pollution. This is 
implemented via an AI system that processes information from 
video or the acoustic monitoring sensor to label observed data 
as “feeding” or “not feeding.”

As with terrestrial farming, there is extensive knowledge 
on the most appropriate feed composition at different stages 
of fish growth, health, and seasonal cycle. A key challenge is 
applying this knowledge to real-world scenarios in the face of 
uncertainty. An IoT solution provides continuous update of 
measured fish size against predicted values, enabling response 
to deviations. Namely, an online AI system monitors current 
biomass and recommends the most appropriate feed compo-
sition based on a database of growth conditions and nutrient 
requirements.

Parasite and pathogen outbreaks have traumatic impact on 
farms, leading to mass mortalities, causing fish to be unmar-
ketable, and generating huge damage to public perception. As 
is often the case, prevention is preferable to a costly cure that 
is dependent on harsh chemicals or highly invasive mechani-
cal removal. Predictive models, as described above, allow for 
advanced treatment to avoid these symptoms, reducing fish loss 
and economic losses.

Figure 3 presents a schematic of the different components 
of a precision aquaculture framework. It can be broadly decom-
posed into four pillars: the monitoring of environmental and 
operational conditions at the cage, farm, bay, and ocean scales 
(considering both in situ generated data and existing data from 
sources such as NASA Modis or ECMWF); integration of data 
from available sources into an accessible form; applying models 
and analytics on the data to generate insight; and the dissem-

ination of that insight to stakeholders in an actionable format 
(directly to farm operators, summary metrics to management, 
report generation for regulatory requirements, etc.).

The Future of Precision Aquaculture
Fish farming is a relatively young industry but, in some ways, has 
been quicker to adapt to difficult circumstances than land-based 
farming because of modern technology. The next phase of 
industrialization is dependent on using data to inform decisions. 
Certain challenges exist related to its location in the ocean – 
requiring robust, low-cost sensors capable of underwater and 
in-air wireless connectivity. However, the industry has seen 
huge progress in this regard with many farms being equipped 
with a dense network of sensors streaming data in real time. 
Similar to other industries, the current focus is extracting action-
able insight from IoT data [15].

Interoperability poses a significant challenge as sensors 
currently cover a wide range of types, suppliers, and levels of 
sophistication. This extends from legacy sensors storing data 
in onboard data loggers to modern sensor stacks reporting in 
proprietary format to dedicated cloud platforms. DeepSense 
is committed to an open standards approach based on MQTT 
protocol. Extensive work is ongoing with sensor manufacturers 
as well as the aquaculture industry more broadly to standardize 
messaging protocols. These include activities we are developing 
as part of Horizon 2020 project GAIN (Green Aquaculture 
Intensification; https://www.unive.it/gainh2020_eu) and previ-
ous work conducted by IBM with seven different Norwegian 
aquaculture companies as part of the AquaCloud project for 
sea lice data. Security and sovereignty of data is critical to fully 

Figure 3. Schematic of the precision aquaculture framework encompassing the in situ monitoring of farm 
conditions and operations, integration of the generated and existing data in a unified cloud platform, analytics 
and machine learning applied to the data to generate insight, and the dissemination of that data to stakeholders 
in an actionable format.
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exploit AI capabilities in an ethical and commercially sustain-
able way. An often overlooked part is the content returning 
from sensors and empowering analytics to understand and 
process these messages. Interoperability of these messages with 
agnostic IoT platforms requires insight into what the value or 
content of each sensor refers to via semantic domain models, 
for example [16]. 

Computer vision is currently receiving a lot of attention at 
the academic and venture capital level. Proponents claim that 
computer vision and AI can be used to monitor feeding behav-
ior and fish biomass, detect sea lice, and optimize the supply of 
feed, medicine, and other resources to farms [17].  

At its core, precision aquaculture is dependent on leverag-
ing IoT technologies to move beyond data toward insight. By 
integrating data from heterogeneous, disparate sources into a 
unified cloud platform, it promises to move from heuristics and 
experience toward evidence and information. Aquaculture is 
projected to supply 62 percent of fish for human consumption 
by 2030, and securing this supply is contingent on eco-intensifi-
cation of the industry based on data.

Conclusion
Because precision fish farming is in its early stages, the devel-
opment and proliferation of sensors is a growth area. A wide 
variety of sensors are feasible, including optical, acoustic, and 
biological sensors for currents, particles, pathogens, and harm-
ful algal blooms. Moreover, a similarly diverse array of image-
based data are being applied to fish farming ranging from 
direct videography of fish to satellite remote sensing. The use 
of drones in data capture is an obvious application of airborne 
technology. The attendant development of AI to analyze images 
and interpret essential information related to fish behavior and 
health is an active area of research. While the benefits of these 
advances in husbandry are apparent, their application to public 
facing indicators of sustainability is critical. The expansion of big 
data in fish farming should have spinoffs for a larger conversa-
tion regarding indicators of sustainability in aquaculture. 
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Connected Cows: Utilizing Fog and  
Cloud Analytics toward Data-Driven 
Decisions for Smart Dairy Farming

Introduction
The concept of smart dairy farming is no longer just a futuristic 
concept, and has begun to materialize as different fields such as 
machine learning have made inroads toward successful applica-
tions in this domain. The data-driven approach is transforming 
many industry sectors including dairy farming, and presents 
us with an opportunity to predict, control, and prevent certain 
undesirable events. 

The demand for dairy products is rapidly rising due to an 
ever increasing population coupled with an increase in income 
per capita [1]. Milk and dairy product consumption is higher 
in developed countries than in developing nations, but this 
gap is reducing with increasing incomes, rise in population, 
urbanization, and dietary changes [2]. It has been estimated 
that the consumer base of dairy and dairy products is set to rise 
from from 1.8 billion people in 2009 to 4.9 billion by 2030 [3]. 
However, methods to improve yield from the agricultural and 
dairy sector have not advanced at the same rate as the increase 
in demand. To cope with the increased demand for food, new 
and effective methods are required to increase the production 
capacity of this sector. Data-driven decisions, methods, and 
measures can help increase the production capacity of these 
industries. 

It can be expected that adopting smart dairy farming prin-
ciples that unify the Internet of Things (IoT), data analytics, fog 
computing, and cloud computing will help meet these demands 
and contribute to sustainable growth in the dairy industry. The 
objective of the work presented is to enable data-driven deci-
sions for dairy farming, and extract timely insights from the data 
by designing suitable analytics models for such use case scenari-
os. This aims to provide a set of controls to the farmer and other 
stakeholders to increase productivity, thus leading to improved 
farming practices for the overall benefit of the industry. 

The rest of the article has been organized as follows. The 
next section presents the problem space being addressed, Then 
we present the real-world IoT smart dairy farm testbed deploy-
ment, associated challenges, critical decisions, and experience 

gained throughout the process. Next, we present the design 
and development methodology used in building the end-to-end 
IoT solution followed by a technical description of the solution 
with associated challenges and developed solutions. We then 
present the benefits to stakeholders, present the conclusion, 
and discuss ongoing and future work. 

The Problem: 
Early Detection of Lameness in Dairy Cattle

Dairy farmers work hard from dawn until late in the evening, 
milking, feeding and maintaining the farm. Thus, it is a chal-
lenge to monitor the well being of hundreds of cows in a dairy 
farm in real time. The methods for looking after animal welfare 
are based on millennia of human experience and grounded 
in observational methods to analyze animal behavior by visual 
observation for some kind of anomaly or potential health issue. 
This leads to the question: Could technology help? Why can’t 
there be a better way to do it? 

There are behavioral changes when animals become ill, 
which can be mapped to specific illnesses. The risk of diseas-
es has a large effect on the economy of a farm — payment 
for veterinary treatments and loss of milk production from the 
infected animals, as well as animal welfare. What if one could 
detect the onset of common diseases before any symptoms are 
even visible? 

To reiterate, the health and welfare of dairy cows is para-
mount to the productivity of the herd in both operational and 
capital expenditure related to pasture management and milk 
production. One of the issues that need to be addressed in this 
domain is lameness management. 

Lameness is a condition that affects the locomotion pat-
terns of livestock. An all-encompassing definition of lameness 
includes any abnormality that causes a cow to change the way 
that she walks, and can be caused by a range of foot and leg 
conditions triggered by disease, management, or environmental 
factors. Controlling lameness is a crucial welfare issue, and is 
increasingly included in welfare assurance schemes. 

Lameness is considered to be the third disease of economic 
importance in dairy cows after reduced fertility and mastitis [4]. 

Abstract
The Internet of Things (IoT) is about connecting people, processes, data, and things, and is changing the way we monitor and 

interact with things. An active incorporation of information and communication technology coupled with sophisticated data analytics 
approaches has the potential to transform some of the oldest industries in the world, including dairy farming. It presents a great oppor-
tunity for verticals such as the dairy industry to increase productivity by getting actionable insights to improve farming practices, there-
by increasing efficiency and yield. Dairy farms have all the constraints of a modern business — they have a fixed production capacity, 
a herd to manage, expensive farm labor, and other varied farm-related processes to take care of. In this technology-driven era farmers 
look for assistance from smart solutions to increase profitability and to help manage their farms well. We present an end-to-end IoT 
application system with fog assistance and cloud support that analyzes data generated from wearables on cows’ feet to detect anoma-
lies in animal behavior that relate to illness such as lameness. The solution leverages behavioral analytics to generate early alerts toward 
the animals’ well being, thus assisting the farmer in livestock monitoring. This in turn also helps in increasing productivity and milk yield 
by identifying potential diseases early on. The project specializes in detecting lameness in dairy cattle at an early stage, before visible 
signs appear to the farmer or an animal expert. Our trial results in a real-world smart dairy farm setup, consisting of a dairy herd of 
150 cows in Ireland, demonstrate that the designed system delivers a lameness detection alert up to three days in advance of manual 
observation.
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It is estimated [5] that lameness costs an average of €275 in 
treatment per instance. Early lameness detection allows farmers 
to intervene earlier, leading to prevention of antibiotic adminis-
tration and improvement in the milk yield as well as saving on 
veterinary treatment for their herd. 

The existing solutions for lameness detection in dairy cattle 
either have high initial setup costs and complex equipment, or, 
in the ones that are technology based, major interoperability 
issues towards compatibility with existing farm based manage-
ment solutions. As a solution to this, we have developed an 
end-to-end IoT application that leverages advanced machine 
learning and data analytics techniques to monitor the herd in 
real-time, and identify lame cattle at an early stage. 

real-world testbed dePloyment toward 
smart daIry farm: challenges, decIsIons, and 

eXPerIence
Focused on animal welfare and health monitoring, this deploy-
ment involves installing sensors on cows’ feet. Data generated 
from these sensors is subjected to analysis using fog computing, 
which is further enhanced by its cloud component that acts as 
the site for data fusion and other related resource demanding 
data analytics functionalities. 

The trial was performed on a dairy farm having a herd size 
of 150 cows in Waterford, Ireland. The important decisions 
made during deployment and the design phase of the present-
ed IoT solution are listed in this section. 

Decision 1: Which wearable sensor technology should be used 
from the numerous options available for livestock monitoring?

From the options available for the sensors/wearables for 
livestock monitoring, we decided to use the radio-communi-
cation-based long-range pedometer (LRP; 433 MHz; industrial, 
scientific, and medical [ISM] band) instead of a WiFi-based 
sensor. The reason behind this was that the former does not 
depend on the Internet for its operation, and serves the pur-
poses of data acquisition in farms where network connectivity 
is a constraint. 

These wearables have lower operational expense and do 
not use WiFi-based connectivity to send sensed data to a base 
station. Therefore, as a part of the real-world deployment, 
off -the-shelf available LRPs (ENGS Systems©®, Israel) specially 
designed for livestock monitoring were attached to one of the 
front legs of cows, as shown in Fig. 1. A detailed analysis of 
other available options and previous approaches were pre-
sented in [6]. 

The workflow and different components of the developed 
IoT solution are presented in Fig. 2. These pedometers have 
sampling frequency of 8 ms and forward their sensed data 
every 6 minutes. The sensed acceleration data is collected at 
a PC form factor device (fog node), where it is aggregated, 
pre-processed, and converted into behavioral activities like step 
count. The system works in both housed and pasture-based 
dairy systems. The cows are monitored continuously, whether 
they are in the fields during favorable weather conditions or 
inside during adverse weather conditions. 

In this study, we used three behavioral activities (step count, 
lying time, swaps) for the analysis with their description as follows: 
• Step count: This is the number of steps an animal takes. 
• Lying time: This is the number of hours an animal spends lying 

down, resting. 
• Swaps: This is the number of times an animal moves from 

lying down to standing up.
The choice of these three parameters is based on a literature 
survey, which suggests these three acts as the best predictors 
of a lame cow or one transitioning to lameness while analyzing 
movement or activity patterns of cows. 

Decision 2: Which network device among the available 
options along the things to cloud continuum should be lever-
aged as a fog node in such IoT deployments?

Fog computing is an emerging computation paradigm that 
aims to extend cloud computing services to the edge of the net-
work, thus enabling computation closer to the source of data. It 
is being used increasingly in IoT applications, especially in con-
strained network and Internet connectivity scenarios, which is 

Figure 1. Cows with long-range pedometers (LRPs) attached on 
one of their front legs as part of our smart dairy farm setup. 

Figure 2. System workflow and diff erent components of the developed IoT solution.
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also one of the issues in remote farm-based deployments such 
as ours. 

Most IoT-enabled smart farms have some sort of farm man-
agement system in place that usually runs on a PC form fac-
tor device available within farm premises. Farmers use it to 
maintain logs and to keep other details electronically at hand. 
Hence, our plan was to utilize the computing resources already 
available in such scenarios and leverage them under the fog 
computing paradigm. Thus, we choose the laptop available with 
the farmer in our case as the fog node. It should be noted that 
the developed system is fully able to adapt if the fog node is 
changed to any other possible representative such as a gateway 
device. A detailed discussion on this aspect of the system, and 
also on using resource constrained devices with low computa-
tional power as fog nodes, was presented in [6]. 

This decision also helps to improve fault tolerance, and build 
up the system resilience to variable farm environments such 
as weather-based network outages and connectivity issues 
because of geographically remote locations of farms. In sce-
narios with low/no Internet connectivity, it becomes ideal to 
process the data locally as much as possible and send the 
aggregated or partial outputs over the Internet to the cloud for 
further enhanced analytical results. The fog-computing-based 
approach leads to effective utilization of available limited band-
width and reduces the dependency on the cloud by facilitating 
part of the data analytics involved in the solution on the net-
work edge. A detailed description of the distribution of services 
and computational processes running on the edge and in the 
cloud for the presented solution was described in [6]. 

Decision 3: Which streaming protocol do we use for stream-
ing data from the fog component to the cloud component? 

There are a number of options available when it comes to 
streaming the data, including Message Queue Telemetry Transport 
(MQTT), Advanced Message Queuing Protocol (AMQP), Exten-
sible Messaging and Presence Protocol (XMPP), and so on. Each 
of these have their individual pros and cons, and selecting one 
depends on the use case, objective, and IoT deployment scenario. 

Our aim was to use a lightweight protocol that can work in 
our use case and is also widely supported by both academia 
and industry in such scenarios. After evaluating and comparing 
the available options, we selected MQTT as the connectivity 
protocol in our deployment. It is a lightweight, open source, 
publish-subscriber model based protocol working on top of the 
TCP/IP stack, originally invented and developed by IBM [7]. 

Decision 4: What should be the development design of the 
system so that it can be usable, compatible, and able to serve in 
two user possible scenarios: 
•	 When a farmer acts as the end user? 
•	 When an agri-tech service provider acts as the end user? 

The end user in our scenario could be a farmer with an 
existing system or an agri-tech service provider who wants to 
provide more services to their clients. With that in mind, we 
decided that the system should be developed as application/
software as a service (AaaS/SaaS), which can be used by the 
service providers to integrate with their existing systems or used 
directly by the farmer. 

This brings us to our next question: Which software devel-
opment technique (or architectural style) should be used while 
developing the system? The answer and discussion on this is 
presented in greater detail in the next section. 

Designing and Developing Software Systems in 
Fog Enabled IoT Environments with 

Cloud Support
Decision 5: Which software architecture or software develop-
ment methodology should be used so that the designed system 
can be multi-vendor interoperable, and also be in line with the 
finalized design of AaaS/SaaS mentioned above? 

Designing and developing software systems is an intricate 
process that requires profound understanding of the procedure, 
consideration of the software architecture and development 
techniques involved, and knowledge of various interconnected 
components in the deployed physical or virtual infrastructure. 

The microservices architectural style comes as the first real-
ization of a service-oriented architecture and is currently in 
wide use by industry for software development and deploy-
ment as part of best DevOps practices. Given its successful 
and wide adaptation in the cloud computing domain, a micro-
services-based architecture seems to be a quite obvious candi-
date for use in such fog-enabled IoT deployments, but its use 
is not straightforward. The design and operational practice is 
sometimes quite different between these two technological par-
adigms [8]. The major reason for this can be that the microser-
vices approach comes from a different perspective, which is to 
efficiently build and manage complex software systems, which 
in turn came to realization as a move toward architectural mod-
ularity. The main drivers of modularity are agility, testability, 
deployability, scalability, and availability 

The challenge now is how to apply the microservices 
approach to build the application in an IoT scenario leveraging 
the fog computing paradigm. In our analysis, we found that a 
distributed modular application architecture using microservices 
was the best approach, given that we could align with the ser-
vice-based and event-driven needs of our application. Modular-
ity is a must, although not every portion of production has to 
be a microservice. Microservices need collaboration, and only 
when there are one or more drivers present should one make 
use of microservices. In our use case scenario, we had all of the 
above drivers present. Microservices come with a set of advan-
tages that make it an use an ideal architectural style for soft-
ware development in end-to-end IoT solutions with constrained 
environments, giving the ability to overcome the constraints of 
vendor lock-in, while attributing technological independence 
between each set of services that make up an application. 

Thus, with this understanding we decided on following a 
hybrid microservices-based approach for application design and 
development in our end-to-end IoT solution. This decision was 
also made keeping a future vision in mind of the work, where 
the microservices act as facilitators to enable dynamic service 
migration based on the network characteristics to increase qual-
ity of service and for better service provisioning. 

Technical Challenges and Solutions
Data Analytics and Machine Learning 

This section presents details on challenges faced and solutions 
developed while designing a machine learning model for animal 
behavior analysis for early lameness detection in dairy cattle. 

1) Cow Profiles: How do we build robust cow profiles that 
are distinguishable by the learning model as lame and non-lame? 
Which parameter do we use as a baseline while building and 
comparing cow profiles? 

For the system to differentiate between normal and anom-
alous behavior due to lameness, we must first form profiles 
to characterize normal (non-lame) and lame behavior in the 
herd. The most frequently used approach for this is to exam-
ine the activity level of lame and non-lame animals and study 
how these differ from the mean of the entire herd. But as it is 
known that outliers (i.e., a single element in a sample being too 
high or low) can affect the mean value of a sample, medians or 
quantiles are sometimes taken as a better measure. To address 
this issue, we studied the relationship between the herd mean 
and the herd median. The results of this, as presented in Fig. 3, 
show that these almost trace out each other for all three activ-
ities (lying time, step count, and swaps). This is one of the fea-
tures of a normal distribution, and therefore it would not matter 
whether the mean or median is used. Thus, we decided to use 
herd mean in our analysis. 
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A study [9] on animal behavior analysis 
and association patterns of cattle shows that 
animals grazing within the same pasture can 
influence the movement, grazing locations, 
and activities of other animals randomly, 
with attraction or avoidance; therefore, most 
of the animals will have their activity levels 
almost equivalent to the herd mean. 

For such reasons, using herd mean as the 
baseline seems appropriate. Thus, any devi-
ation from the herd mean should serve as a 
preliminary indicator for a sign of change in 
behavior, which could potentially be lame-
ness, among other reasons. Such an analysis 
eliminates the effects of external factors, as 
these will largely aff ect the herd as a whole. 
Further, the measure used to note the devia-
tion in behavior while forming lame and nor-
mal profiles of cows in the herd was mean 
absolute deviation (MAD), while compar-
ing behavior of individual cows with these 
formed profiles was average deviation. 

We build a profile for each animal to 
characterize normal behavior in a time win-
dow using activity-based threshold cluster-
ing, details of which are presented later in 
the article. This helps us to define the lame-
ness activity region (LAR, the period during 
which the animal is confirmed lame) and nor-
mal activity region (NAR, the period during 
which the animal is confirmed as non-lame), 
which later acts as ground truth input for the 
classification model for detecting lameness. 
An example of this is presented in Fig. 4 for a 
random cow with ID 2346 in the herd. 

However, by comparing the activity of 
each cow against the herd mean, we found 
out that not all animals behave the same 
way. Not all the animals in the herd had their 
activity tracing the herd mean — some had 
higher, some lower, and some equal. This observation led us 
to our next decision in the analysis, which was to identify the 
clusters in the herd. 

2) Clustering: Does each animal in the herd need to be treat-
ed separately (i.e., treating each cow as a single experimental 
unit), or can a clustering technique be used to define clusters of 
animals that share similar features within the herd?

The same study [9] referred to earlier in forming cow 
profiles also shows that cattle in the same pasture are not 
treated as independent experimental units because of the 
potential confounding eff ects of the herd’s social interactions. 
It also provides the insight that activity patterns of groups of 
cows within the herd may have a level of independence that 
is sufficient for analyzing them as individual units under situ-
ations such as large herd size of around 53–240 cows. This 
means that smaller herds (less than or equal to 40 cows) don’t 
exhibit any patterns of group formations within the herd, while 
larger herd sizes (53–240) show formations of groups within 
the herd. It should also be noted that technology-based auto-
mated smart solutions for animal welfare are more beneficial 
for farms with large herds; one can assume that for small ones 
the farmer can manually keep track of each animal’s welfare 
without much eff ort. 

From our analysis and literature study, it was clear that a 
one-size-fits-all approach, where it is assumed that all animals 
behave the same way, and all cows are treated as a single set 
(i.e. without any grouping) to detect anomaly in behavior, won’t 
be efficient. There are subsets in the herd that share similar 
features, which once identified can be leveraged to fit the use 
case as opposed to a one-size-fits-all solution. In our analysis, 

we found that even animals of the same age behaved diff erently 
and had diff erent levels of activity. 

Our clustering model is based on the observation that there 
were some animals in the herd whose activity levels (step 
count, lying time, and swaps) were always greater than the 
mean activity value of the herd, and some whose activity levels 
were always less than the mean herd activity, and then there 
were others who traced the herd mean. Based on this, we form 
three clusters as follows: 
• Active: These are animals in the herd whose activity levels are 

always higher than the herd mean. 
• Normal: These are animals in the herd whose activity levels 

always trace out the herd mean. 
• Dormant: These are animals whose activity levels are always 

lower than the herd mean. 
It is worth mentioning that prior to finalizing activity-based 

clustering in our use case, we also used age-based clustering 
[10] to define clusters and then fed those into the classification 
model for early detection of lameness. It didn’t lead to early 
detection of lameness, and in line with literature studies we 
looked for other clustering techniques as well, and found that 
activity-based clustering performs better [11] in the use case of 
early detection of lameness. 

The above conclusion led to further investigation of the 
clusters, concerning their nature as static clusters, re-cluster-
ing, and optimal approaches to clustering. From our analysis, 
we found that clusters are dynamic in nature, that is, the 
animals can migrate from one cluster to another in a time 
window. There can be a number of reasons behind this; we 
postulate age and weather at least, and perhaps other factors 

Figure 3. Comparing the mean and median of the various animal activities.
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Figure 4. Relationship between herd mean and cow activity for cow 2346, showing 
deviation in its behavior from the herd as it transitions into lameness.
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that affect the activity levels of the animals and the herd as 
a whole. 

Thus, it is the responsibility of the clustering model to re-clus-
ter the animals prior to feeding data into the classification 
model. The optimal time to re-cluster was found to be about 
2 weeks (14 days). This decision was made by continuously 
observing the movement of animals between different clusters, 
and finding the time frame of these movements. 

3) Classification — Early Lameness Detection: The next 
important question was to decide on which classification model 
should be used given the objective of early detection of lame-
ness in dairy cattle?

Classification algorithms belong to the set of machine learn-
ing algorithms that output a discrete value. Often, these output 
variables are referred to as labels, classes, or categories. Classifi-
cation problems with two classes are called binary classification 
problems, and those with more are referred to as multi-class. 
In our use case scenario, the problem was written as a binary 
classification problem, with lame being the positive class and 
non-lame the negative class. The data split was as 80-20: 80 
percent of data was used for model training and the remaining 
20 percent was used for testing. 

We examined a number of classification algorithms [12] 
ranging from support vector machine (SVM), Random For-
est (RF), K-nearest neighbors (K-NN), and decision trees. We 
found that the K-NN-based classification algorithm served best 
for early lameness detection in our use case, as it was best 
balanced in terms of accuracy and early lameness detection 
window. It gave an accuracy of 87 percent with a 3-day early 
prediction window in advance of any visual sign of lameness 
observed by the farmer. 

A short demo video of the overall end-to-end IoT solution 
thus designed and developed is available at [13].

Benefits to Stakeholders
The detailed impact and benefits to stakeholders are outlined 
below: 

Animals: Animals can’t communicate the way humans do. 
With a little bit of technology, we can understand their natural 
behavior and trends. We can see the irregularity and change in 
their behavior and can then take appropriate measures toward 
their well being. This not only helps improve the production 
capacity, but it also improves the health and social interactions 
within the herd. 

Farmer: Increased size and scale of the farm poses various 
challenges for a farmer. In this tech-savvy and data-driven era, 
it’s easier for a farmer to manage the well being of a big herd 
on a handheld digital device. 

Conclusion
We have outlined the key design principles used in the develop-
ment of our IoT solution aimed at early detection of lameness in 
dairy cattle. We present the critical decisions made and meth-
odologies used in designing an end-to-end software system in 
fog-enabled IoT scenarios for our use case. 

The key takeaways are: 
•	 A hybrid machine learning model such as the one present-

ed — activity-based clustering combined with a classification 
model, returns accurate results in detection of anomalies in 
animal behavior for early detection of lameness as opposed 
to a one-size-fits-all approach. 

•	 Results clearly suggest that once monitored, the behavioral 
changes when animals are ill can be mapped to specific ill-
nesses such as lameness in our use case scenario. 

•	 Many of these behavioral changes that occur before visual 
onset are extremely subtle and difficult to detect in practice 
without technology. 

•	 A careful coordination of computational resources along 
the technology path from sensor to cloud continuum is vital 
to the performance of such a system. Edge, fog, and cloud 

resources each bring their unique input to the functionality 
and performance of the overall IoT application system devel-
oped. 
We believe that the insights from this study can contribute 

to the behavioral analysis of animals, and can help detect subtle 
changes in livestock behavior before any clinical symptoms of 
disease are visible. This will lead to improved insights in animal 
behavioral analysis and better practices for farmers. The wear-
able technology for livestock in conjunction with advanced 
machine learning methods has the potential for development 
of robust early warning systems to detect disease development 
early on. 

Ongoing and Future Work
To further validate the proposed approach for early lameness 
detection, we are expanding the work undertaken to date 
through the execution of a use case in the IoF2020 project 
(Internet of Food & Farm 2020, https://www.iof2020.eu/)
named Machine Learning Based Early Lameness Detection 
in Beef and Dairy Cattle (MELD). The MELD project is build-
ing and expanding on this existing work, integrating it into the 
IoF2020 dairy farming technology trials with planned deploy-
ments in Portugal, Israel, and South Africa, leveraging sensor 
technologies from two different vendors on a combined total 
of approximately 1000 cattle. With more data at hand, we then 
aim to examine other possible clustering techniques and evalu-
ate other classification techniques to further improve the algo-
rithm. 
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Growing Plants, Raising Animals, and 
Feeding Communities through Connected 

Agriculture: An IoT Challenge

Introduction
Agriculture is core to human survival. Through agriculture we 
harness the power of nature to grow plants and raise animals 
to feed, clothe, and fuel our communities. From axe to drone, 
we have designed and developed technologies to augment our 
physical and mental faculties in the pursuit of food, and even-
tually, the practice of cultivation and husbandry. The design of 
agricultural technologies is not new, but our methodologies, 
farming practices, communities and values, science, and envi-
ronment are all changing. Agricultural and technological prac-
tice and innovation are deeply intertwined. 

The dawn of agriculture is marked by our transition from 
nomadic to settlement-based societies in the Neolithic peri-
od, as we began to domesticate plants and animals. Since 
then, there have been three technological innovations that 
have catapulted our agricultural capacity. First was the indus-
trial revolution, spawned by the development of the John 
Deere steel plow that magnified our ability to break the soil 
and enable improved seedbeds at that time.  Subsequent 
development of tractors and other machines transformed 
agricultural operations, making agricultural mechanization 
one of our top 10 feats of engineering [1]. In the early 1900s 
came chemical innovations exemplified by the discovery 
of the Haber-Bosch process: an artificial nitrogen fixation 
technique use to produce ammonia. Our ability to produce 
synthetic fertilizers dramatically increased food production. 
Genetic engineering marks the third wave of technology in 
agriculture: Norman Borlaug’s development of wheat variet-
ies for multiple growing seasons in a year, disease resistance, 
and, most famously, dwarfism. Along with the continued 
progress in cultivation methods, these have resulted in the 
massive expansion of food production throughout south-
east Asia, popularly known as the Green Revolution. Each of 
these periods of technological innovation have had complex 
ripple effects on human nutrition, environmental conditions, 
economic prosperity, social justice, and the very nature of 
agriculture.

We are now well into a new era in agriculture that builds on 
the knowledge and tools from each of those earlier revolutions: 
the digital revolution. We design technologies to help us man-
age complex food logistics and distribute food fairly;  improve 
worker livelihoods, community well being, and equitable money 
distribution; improve nutritional quality of food, while enabling 
creativity in cooking; improve animal welfare, soil health, and 
air and water quality, and create more regenerative agricultural 
systems. Agricultural technologies are no small matter of pro-
gramming, and the challenge that lies ahead for the IoT commu-

nity is a transdisciplinary problem in connecting plants, animals, 
machines, people, and environments, to support resilience in 
our food system. 

This has inevitably led to the design of a plethora of net-
worked devices for sensing and actuation, conceptualized as 
the Internet of Things (IoT), with the promise of technologies 
to empower us to sense more, act swiftly, and make better 
decisions. Early visions of IoT for agriculture focused on the 
augmentation of human senses. Cameras and imaging provide 
sight at a distance, with computer vision enabling the detection 
of crop health and tracking of animal movement. Chemical 
traces can be sniffed out using air quality monitors, allowing for 
the monitoring of methane emissions by animals in confined 
environments. Probes allow us to touch soil to sense for mois-
ture, and our hearing is augmented through devices that listen 
for the presence of predators in our pastures. However, every 
sensor we introduce runs the risk of inducing sensory over-
load. An increased interest in sensing farms introduces both 
opportunities for new agricultural practices but also a cognitive 
overload on farmers, consumers, and everyone in between, as 
they are faced with a glut of data. The near-term challenge in 
agricultural IoT is to consider: How can we empower agricul-
tural stakeholders with high quality and timely data for better 
decision making? 

At minimum, IoT is simply a network of sensors and actu-
ators deployed in a given context [2]. IoT involves machine-
to-machine interaction, where each machine may consist of 
a data acquisition component, a computational and data 
storage component with networking capabilities, and some-
times, actuators or control logic. Taken to its logical extreme, 
IoT involves ubiquitous computing, with sensors and actua-
tors embedded in our landscapes, abstracting and automat-
ing certain categories of actions (e.g., moving things) and 
decisions (e.g., when to turn a switch on) without human 
intervention. It is imperative, therefore, that we consider 
community values, civil liberties, the future of work, and 
environmental impacts, among other consequences when 
designing IoT systems, including IoT for agriculture. Technol-
ogy is an alloyed good, which combines potential benefits 
to society and human well being with externalities that may 
only appear post-deployment. 

In the coming decade, the challenge will be to consider: 
How can we harness the power of digital agricultural technolo-
gies to improve, sustain, and grow with care? Innovations in this 
space have applications throughout our food system, from agri-
culture, to production, transportation, processing, marketing, 
consumption, all the way to waste management. The thoughtful 
implementation of IoT in agriculture offers the radical oppor-
tunity to improve resilience in our food system and enable 
data-driven regenerative agriculture. 

Abstract
The Internet of Things is a growing field of design and development in agriculture. In this article, we provide IoT researchers and 

practitioners a glimpse into the motivations, needs, and challenges faced when designing digital technologies for agriculture. We 
describe three farming scenarios and offer a vision for the power of IoT in agriculture, followed by a discussion of opportunities for 
design. We build the argument for why just collecting data isn’t enough and suggest target areas for the design of ubiquitous digital 
technologies for agriculture. Finally, we introduce four communities of practice on IoT for agriculture.
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A Tale of Three Farms
In each of Figs. 1, 2, and 3, we detail a design fiction scenario 
to offer a sampling of agricultural complexity and decision mak-
ing. Each scenario is concerned with an archetypal farm and 
describes a suite of IoT sensing and intelligent decision support  
that explore the untapped but reachable potential of IoT in 
agriculture. 

Connected Agriculture
We describe five categories of connectedness in agriculture: 
plants, animals, machines, people, and environments. By 
breaking down the landscape of agricultural IoT in this man-
ner, we offer a variety of entry points for IoT researchers and 

practitioners to consider when designing sensors, actuators, 
micro-computers, and IoT devices for agricultural use cases. 

Connected Plants
We grow a very wide diversity of plants as agricultural com-
modities. Each type of plant has its own unique management 
challenges, structural properties, tolerances, and components 
that we care about the most. The efficacy of plant sensing tech-
nologies varies widely. Highly standardized plants grown in 
monocultures offer the least amount of variability and have 
proven to be a good testbed for many plant sensing technolo-
gies. As sensors and our ability to use such data with robotics 
improves, we are beginning to see more and more design for 
specialty crops (vegetables, fruits), including interest in design 

Figure 1. Valley Farms: A design scenario envisioning IoT in agriculture.

Figure 2. Bluebird Gardens: A design scenario envisioning IoT in agriculture.
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for the management of diverse farming systems. 
Figure 4 overviews the diff erent “levels” at which we sense 

plants. Each of these types of sensor data, when coupled with 
an actuator, may be used for a variety of strategic and tactical 
decisions in a fi eld. Some examples include: 
• Subsurface: Sensing root architecture can inform our assump-

tion about nutrient uptake, and thus determine nutrient man-
agement and tillage remediation. 

• Under-canopy: By counting plant stems in a row, we can 
determine yield potential and gain an understanding of how 
plant density affects plant growth or planter settings affect 
germination. 

• Plant-level: Genomics data and within plant sensing via, for 
instance, hyperspectral imaging and high throughput pheno-
typing off er insights into the interplay between genetics and 
environment. 

• Overhead: Machine or unmanned aerial vehicle (UAV) 
mounted sensors can be used to determine weed-crop com-
petition or disease manifestation, providing farmers with a 
map of crop health to inform fi eld management. 

• Extraterrestrial: Remote sensing can be used reasonably eff ec-
tively to estimate biomass or ground cover and subsequently 
crop eff ects on the landscape. 

connected AnImAls
Livestock introduce many levels of complexity when thinking 
about IoT for agriculture. While raising animals for food, there 
is a delicate balance between managing their diet, environment, 
and other factors to result in high-quality meat. There is also 
a need to care for their well being and quality of life. Animal 
needs vary widely; to date, IoT for livestock has focused on sup-
port for beef and dairy cows. 
• Individual (external). A common practice, whether ani-

mals are kept indoors or outdoors, in water or on land, is 
tagging. Tags have evolved from brands to clips on ears, 
to RFID tags that allowed for tracking of animal move-
ment, and more recently are beginning to include a variety 
of sensors. For example, accelerometers placed on ear 
tags can provide researchers with valuable data on ani-
mal behavior, allowing early detection of stress, sickness, 
estrus, or pregnancy. 

• Individual (internal). More recently, experimental technol-
ogies are being developed to provide livestock managers 
with insights into individual animals’ internal health as well. 
This includes, for instance, the placement of small devices 
inside the rumen of a cow to monitor their digestive activity 
to determine animal health and feed effi  ciency and to antici-
pate eff ects on the resulting meat or milk. 

• Groups. Herd tracking is also a growing area of interest, 
with explorations in the use of drones to track, guide, and 
potentially deliver medicines to animals that roam in pas-
tures. The idea behind these systems is to minimize human 

Figure 3. Luna Dairy: A design scenario envisioning IoT in agriculture.

Luna Dairy is a 300-cow, 400-acre robotic dairy in central Pennsylvania. They market milk to a processor, but 
regularly entertain schools and other organizations in agri-education. Tricia manages the cropland and 
machinery and uses mid-level precision technologies because that is all that is available for forage systems.  
Brian oversees all animal operations. They strive to be exemplars regarding animal well-being, livestock 
nutrition, and nutrient utilization. They utilize robotic feeders for cows and calves and robotic milkers to improve 
consistency in feeding and comfort for the livestock. Farm goals include:

● To monitor and improve animal well being and production.
● Educate the public regarding agricultural operations.
● Maximize return on nutrients as well as investment.
● Conserve soil with appropriate forage-based production on the owned land.

Forage Production The alfalfa growth model, using the near-term forecast for this week and historical trends of the 
past 8 years for weeks that follow, suggests you commence cutting on May 14 to get all 150 
acres harvested near optimally. Even though this may delay corn planting, we are 90% sure you 
can complete corn planting in time given the day length of silage corn you are planting.

Animal Tracking Your heifers should be moved from paddock 7 to 8 this afternoon.  We could automatically open 
the gate and mini-swarm UAV operations, but you may want to do this manually and check on 
#74 while you are there. Her chewing behavior and pasture roaming pattern is atypical for her.

Water Quality Environmental temperatures have cooled significantly over the past 2 weeks. Generally water 
intake lowers with temperatures in this range but water intake has steady which indicates your 
cows are near their optimal comfort level. Milk production and frequency to the milkers is steady.

Feed Management Usually you rotate from paddock 3 to 10, but given current soil moisture levels, the forecast, and 
historical records, I am 90% sure that going into paddock 8 first will increase feed production and 
gain by 7% over the next 30 days.

Environmental Control The cows spent more time inside over the last three days than is average for this time of year. As 
a result, your energy consumption is up 16%. Wind, not temperature or humidity, is the cause; if 
you open 40% of the south curtains and only use fans to control humidity inside, energy 
consumption can be 15% without affecting comfort. 

Robotic Feeding See the MyFeeder app to see which 8 calves are consuming milk replacer at below threshold 
(75% of average for calf weight) values. Three of those calves have been treated for scours. 
Activity and thermal sensors are suggesting the other 5 may be in need of treatment.

Waste Management Your phosphorus concentration in the manure from the lactating cows is 6% lower than at this 
time last month. You may be able to use more on your land to lower your nitrogen bill.

Luna Dairy
regularly entertain schools and other organizations in agri
machinery and uses mid
Brian oversees all animal operations. They strive to be exemplars regarding animal well
nutrition, and nutrient utilization. They utilize robotic feeders for cows and calves and robo
consistency in feeding and comfort for the livestock.

●
●
●
●

Figure 4. Plant sensing
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intervention in the life of the animals, conceivably reduc-
ing stress and allowing for increased independence of 
grazing herds.

Connected Machines
Given early visions of IoT as simply machine-to-machine inter-
action, it makes sense that agricultural machines were some of 
the first things to be networked.  Early digital agriculture took 
the form of precision agriculture, which primarily involved auto-
mation of farm activities typically conducted by machinery. The 
introduction of drive-by-wire meant that tractors, harvesters, 
combines, and other large farm vehicles were the perfect test-
bed for early IoT (with much of their data flowing in standard 
controller area networks, CANs [3]). Variable rate technologies 
exemplify early success in closing the sense-decide-act loop in 
agriculture [4]. For example, variable rate planting technologies 
can utilize a soil map (generated with remotely sensed images 
and/or machine data that is augmented with ground truth data 
collected by field scouts) to plant different crop varieties in dif-
ferent soil types. Subsequently, a variable rate applicator could, 
using a projected yield map based on historical data, apply fer-
tilizer in a more optimal manner. While such technologies have 
been relatively widely adopted, variable rate technologies and 
other precision machinery have typically been used in the realm 
of fairly large-scale, wide-acre monoculture cropping systems. 

There is also growing interest in creating IoT systems for 
indoor livestock agriculture, where animals are able to inter-
act with a variety of machinery from weighing scales, feeding 
stations, to milking devices. Here, dairy cow operations have 
received the most attention with dramatic impacts on the land-
scape of dairy, particularly in the United States. An instrumental 
approach has been robotic milking and robotic feeding. 

Connected Environments
Weather, soil, air, and water quality monitoring, for both indoor 
and outdoor agriculture, are increasingly important as our envi-
ronmental conditions become more volatile. Some of the first 
forms of sensing to be streamed from farms include rainfall, 
humidity, temperature, and other data from weather stations 
located on farms across the world. At times, these are farm-
er-owned and operated, while in other cases a weather sta-
tion may be part of, for instance, the National Weather Service 
network. Land and water on farms are typically sampled peri-
odically, sent to laboratories where they are tested, for exam-
ple, for microbial, chemical, and nutrient composition. More 
recently, soil and water sensors have been developed to, for 
example, detect soil moisture, pH, and nutrients. Such sensors 
are increasingly connected to networked computers that pro-
vide access to real-time environmental data at specific locations 
on farms. Such data are crucial components of agricultural IoT 
as they provide critical site conditions that often determine the 
constraints and conditions for various agricultural activities to 
be conducted (e.g., smart irrigation). 

A systems approach to connected agriculture is current-
ly best exemplified by vertical agriculture. Crops are grown 
in carefully controlled greenhouses, with nutrients delivered 
through a network of pipes and filters, controlled lighting and 
air conditions, and constant streams of data about plant and 
growth chamber properties available to farm managers via a 
suite of dashboards.

Connected People
Most farmers and farm workers in the United States are already 
connected via smartphones. Currently, there are many applica-
tions to allow people to track their work, but also coordinate 
and collaborate on farm activities. Some applications provide 
real-time streaming data collected by sensors (e.g., weather 
station apps), while others provide real-time location of tagged 
livestock. In many ways, the current state of IoT means that 
for each type of thing connected in a farm, there is likely a 

standalone web or mobile application that people must use to 
interact with the data. However, there is significant untapped 
potential for wearable technologies that are enabled with voice 
input and smart algorithms to provide hands-free, and ideally 
automatic, data collection, manipulation, and visualization of 
agricultural data. 

Infrastructural Limits
It is critical to note that there are two fundamental hardware 
limitations to current efforts in IoT for agriculture. First are power 
limitations. The lifetime of a battery is particularly important as 
the frequency of change must be considered. In the case of 
large-scale agriculture, IoT sensors may be deployed across vast 
spaces. As the distances between plants, animals, machines, 
and people are great, the frequency of battery change as a 
result of battery life is particularly problematic. A farmer does 
not want to chase down a cow to replace its ear-tracker battery 
or have to visit each sensor; this would introduce an entire layer 
of maintenance due to IoT device density. Since plugging in an 
IoT device is not always an option in agriculture, many devices 
are designed to include, for instance, small photovoltaic systems 
to produce their own power. However, limitations on panel size 
and efficiencies constrain the computational capacity of such 
devices. 

Second is Internet connectivity in rural spaces. Agricultural 
landscapes are less sparsely populated than urban areas. For 
too long, this has been the rationale used to excuse limited to 
no availability of broadband Internet in rural communities [5]. 
The promise of IoT in agriculture to provide decision support 
based on real-time site-specific conditions is hampered by our 
ability to transmit data on farms: from big data (e.g., drone-cap-
tured imaging of vast grazing lands), to distributed data (e.g., 
location and other data from hives located on orchards across 
a region), and dense data (e.g., multiple, by minute measure-
ments of water quality in aquaponics farms). While there is 
growing support for increased access to rural broadband, we 
argue that edge computing, mesh networking, and continued 
reduction in cost and size of micro-computers can still allow 
for IoT innovation in agriculture. Furthermore, new technologies 
and approaches for connectivity, sometimes with delay or low 
bandwidth, solve some of these problems. 

Opportunities for Design
In the last decade, there have been some key technologi-
cal developments that improve our ability to realize IoT for 
improved resilience in food systems and enable data-driven 
regenerative agriculture. There has been a steep decline in the 
cost of sensors, micro-computers, actuators, and other IoT com-
ponents, along with a growing interest in developing environ-
mental sensing technologies for smart and connected cities, 
ecologies, and agriculture. In turn, this has led to research efforts 
in data science, machine learning, ontologies, and decision sup-
port to take advantage of increased availability of agricultural 
data. An increasing interest in open source technologies, as well 
as demand for access and agency to one’s data, further has 
the potential for innovation in agricultural IoT. Opportunities 
and challenges for design are driven by urgent issues faced in 
agriculture due to climate change, support for rural communi-
ties, increasing inequality, and public values and interest in the 
provenance of food. 

The reality and future of IoT in agriculture will unfold soon. 
We offer eight opportunities in design for improved research 
and innovation in IoT for agriculture. 

Design for Sustainability: We have previously issued a call 
to action, bringing together through human-computer interac-
tion (HCI) researchers, designers, and practitioners to critically 
engage in the design of technologies for a more sustainable 
food system [6]. We argue that human-centered, community-ori-
ented, and environmentally sensitive approaches to research and 
development are critical for IoT adoption in agriculture.  
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Design for Rural Communities: The increasing presence 
of connected devices in our homes and workplaces will also 
be matched with increasing familiarity and comfort with such 
technologies in general, which may influence adoption of agri-
cultural IoT. In the case of agriculture, the digital divide remains 
within countries including the United States, where there is a 
gap in access, availability, and education regarding digital tech-
nologies between urban and rural communities [7]. We have 
previously described infrastructural challenges in agricultural 
landscapes. Digital transformation must also be paired with 
access to employment and education opportunities for work-
force development and modernization. If the future of agricul-
ture is digital, we must prepare for the shift in skills required for 
the future of work. 

Design for Data Sovereignty: Pursuant to achieving its tech-
nical potential, IoT can be thought of as ubiquitous computing, 
with sensors integrated throughout our landscapes. However, 
monitoring without agency or control is simply surveillance. 
Digital agricultural technologies must consider the data rights of 
farmers while offering consumers and other farm stakeholders 
appropriate insights into the provenance of food. To achieve 
this, we must negotiate the balance between transparency and 
accountability with privacy. This is further complicated as net-
worked landscapes inevitably introduce security threats into 
otherwise isolated systems. We argue that successful IoT for 
agriculture must begin with transparency in data use, a focus on 
the ethical implications of monitoring and control, and consid-
eration of data sovereignty of food system stakeholders to be a 
primary requirement. 

Design for Agricultural Diversity: Agricultural systems are 
extremely diverse, as are the factors of inspiration and drive 
toward IoT implementation for different crops, animals, practic-
es, and places, where initially, IoT systems were not commonly 
available for small-scale agricultural systems; nor were they 
particularly affordable. However, the increasing proliferation of 
low-cost sensors and microcontrollers, matched by consumer 
appetites for understanding the provenance of their food, has 
led to an explosion of interest in digital technologies across sys-
tems and scales [8]. 

Design for Trust and Accountability: We have previously 
called for the design technology to increase trust and account-
ability in our food system [6]. IoT, in particular, offers the 
capacity to ground-truth agricultural practices, by allowing for 
provenance data to truly begin within the farm itself. Indeed, 
there are several current efforts in research and practice propos-
ing the harmonization of farm sensor and/or sample data, and 
farm management information, in the context of environmen-
tal conditions to provide verifiable evidence of sustainability 
claims. Indeed, IoT in agriculture is a foundational component 
of improving traceability in the supply chain, particularly given 
the current trend of utilizing blockchain technologies for supply 
chain verification. 

Design for Agricultural Practice and Decision Support: 
Effective IoT for agriculture demands the closing of the sense-
decide-act loop. Achieving dramatic improvements (true loop 
closing) will require interoperability unlike ever seen before in 
agricultural contexts. Data from machinery, sensors in soil, prod-
ucts, bins, sensors on animals, data regarding workers, weather, 
imagery, audio traces, and video need to first be interoperable 
and machine readable; then true fusion can occur. Researchers 
wrangle data (and do it in post-processing mode) in order to 
test hypotheses and develop models, but practitioners certainly 
do not have the time or generally the skill set to gather, refor-
mat, align, visualize, and analyze data. 

Given our silo-ized sensor-driven approach to IoT, to date we 
have typically only been able to offer decision support for the 
optimization or management of single variables (e.g., yield opti-
mization, irrigation timing, weather reporting). Early develop-
ments in one-dimensional data-driven approaches in agriculture 
were technologies for soil characterization, crop health, yield 

maps, and livestock feed management. Some popular “full-
stack” technologies include variable rate applicators for more 
efficient input use (e.g., water, pesticides, fertilizer) in large-scale 
row cropping systems and, more recently, robotic milkers and 
feeders that allow many cows and calves to find their own milk-
ing rhythm and schedule.  The next level of decision support 
must have larger reach. 

In addition to the often one-dimensional approach, current 
commercial IoT and analytic platforms largely focus on strate-
gic decisions. A couple of exceptions would be controls for 
irrigation, grain bin aeration/drying, and greenhouse condi-
tions.  Because of this, there has been little need for real-time 
data flow (or maybe it is that the lack of real-time connectiv-
ity has resulted in the delay-tolerant focus).  With a dramatic 
improvement in interoperability and connectivity, there is great 
potential to also improve tactical decisions. The current state 
of delayed access to data for insights, however, often results 
in poor or missing data [9]. Such poor and occasionally sparse 
data leaves lots of potential for improving decision making. If 
we can achieve connectedness and interoperability, the state 
of the firm/farm/operations can be known, so managers can 
better make the “best next” decision. In cropping systems, this 
might entail knowing moisture content of soils in all fields and 
stage of growth of crops in all fields. In livestock systems, this 
might be knowing daily rate of gain and daily feed intake per 
animal. In logistics, it could be up-to-date knowledge of queues 
and at-the-moment capacities. 

We look forward to a near-term day when economic and 
environmental sustainability (and also logistics when it comes 
down to details) and optimal nutrient management in cropping 
systems can be accomplished using relevant data. That may 
include public data (topography, soil type), non-IoT data (soil 
sample results), and sensor data to improve related decisions. 
By integrating georeferenced yield data (i.e., “fused” analysis 
from sensors for location, speed, width, crop flow, crop mois-
ture), electron conductivity of soil, and UAV imagery, which 
can indicate plant health and nutrient concentrations, we will 
be able to improve strategic decisions within the context of 
an entire season. We will also influence tactical decisions and 
implementation over time with people and machines, through 
optimization (even by simplifying constraints or using simplified 
objective functions). 

Design for Ubiquity: As we are beginning to think about 
sensor consolidation to offer multi-sensed models of farms and 
critically consider the diversity of commodities in agricultural 
systems, we are able to design for agricultural diversity. Effective 
IoT in agriculture requires intelligently deployed sensing, which 
also captures structured metadata (i.e., full context) in machine 
readable formats with the potential for human comprehension. 

If agricultural data streams and sets really met the FAIR (find-
able, accessible, interoperable, and reusable) principles (even 
in a private context), tactical decisions could be facilitated with 
microservices and apps that merge data and models. The three 
farming scenarios depicted earlier in this article hint at some of 
these possibilities. Consider, for example, that if soil type, soil 
cover, weather, and topography were known, and soil moisture 
and growing degree days (GDD) could be computed, visual-
ized, and analyzed. This could positively influence decisions 
regarding sequencing of spring work in fields; if planting date 
and variety (GDD to maturity) were automatically recorded, 
GDD tracking could provide an approximate status of each 
field going into each next “phase” of the growing season (scout-
ing, spraying, harvesting). Combined with aerial imagery or sen-
sor data that kept these models on target, a farmer would have 
decent assurance of near optimal logistics. 

Design for Interoperability: Digital agriculture is in its infan-
cy and currently involves a fragmented landscape of data, mod-
els, tools, and communities. Several efforts exist to introduce 
conceptual and practical interoperability to enable seamless IoT-
based systems. For instance, the Open Technology Ecosystem 
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for Adaptive Management [10] eff ort around interoperability in 
field-level measurement techniques aims at a connected user 
experience through an ecosystem of tools and a data sharing 
community for the enablement of soil health research.  

Such efforts require ontologies, application programming 
interface (API) frameworks, and standards as fundamental build-
ing blocks for interoperability for use in communities of practice 
that include farmers, researchers, and developers alike. For 
example, the Open Ag Data Alliance [11] is an open source 
extension of the REST framework designed for agricultural data 
interoperability. OADA provides a “standard API framework for 
automated data exchange” with an immediate focus on knitting 
together disparate machine data streams.  

The harmonization of sensor data requires an ontological 
consistency among farm models and software. We have pre-
viously developed the Modeling Sustainable Systems (MoSS) 
framework for modeling complex adaptive systems for model-
ing farms [12]. The goal was to provide an information model 
of an agricultural system that used a coherent vocabulary 
and syntax, mapped onto farmers’ mental farm models, and 
enabled the spatio-temporal representation of heterogeneous 
farm data to enable design for decision support. Our current 
work includes the extension of MoSS as a means to harmonize 
sensor data across scales.

oPen source for Iot In AgrIculture
An open source approach to software development democ-
ratizes innovation, removes barriers to collaboration, increases 
markets, and improves the talent pipeline [13]. A functioning 
and interoperable middle layer — between the raw sensor data 
and insight to users, or better yet automated controls — can 
only be achieved via open source development where stan-
dards naturally emerge due to success in achieving the goal 
[2]. This same open source culture speeds innovation because 
there is less reinventing of interfaces, conversion utilities, and 
algorithms. It results in more productive development due to a 
talent pool knowledgeable in how to FIND solutions to seem-
ingly new problems from other fi elds. 

We invite the IoT community to four communities of practice 
on agricultural technology. We introduce these communities 
simply as an entry point for IoT researchers. As we are founding 
members of the groups listed in this section, we describe this 
selection as we can offer a point of entry for IoT researchers 
and practitioners looking to engage in IoT development for agri-
cultural use cases.

The Gathering for Open Agricultural Technologies (GOAT):
A grassroots, online, open source community, the GOAT forum 
and instant messaging channels offer an easy place to begin: 
http://forum.goatech.org. GOAT was initially founded to bring 
together farmers, researchers, and technologists interested in 
coordinating open source development of digital technologies 
for agriculture, including IoT [14].  

The Open Agricultural Technology & Systems Center 
(OATS): Researchers at the Purdue OATS are focused around 
a suite of topics including sensor development and harmoni-
zation, machine automation, data interoperability, human cen-
tered design, and agricultural modeling and simulation, detailed 
at http://oatscenter.org. OATS faculty argue that IoT for agricul-
ture requires coordination across each of these fronts, across 
government, industry, and research through an open source 
development paradigm.

Precision Sustainable Agriculture (PSA): For IoT research-
ers particularly interested in technology targeted at large-scale 
sustainable agriculture research and practice, including farming 
techniques such as cover cropping, visit http://www.precision-
sustainableag.org. Researchers are particularly interested in the 
integration of sensing techniques across scale via the consolida-
tion of sensor data from probes, drones, and satellites.  

Open Technology Ecosystem for Adaptive Management 
(openTEAM): A collaborative community of farms, research 
labs, non-profi t organizations, food companies, and food system 
stakeholders. Members are dedicated to the development of 
critical technologies to improve our understanding of regenera-
tive agricultural practices, particularly in service of adaptive soil 
health management. Working groups, ways to get involved, and 
more information can be found at http://openteam.community.
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AROUND THE WORLD OF IOT
In this column we plan to take a tour around different physical locations in the world with the objective of highlighting the peculiarities 
of the trendiest IoT-related applications in selected regions. Thus, the “IoT World” will certainly be physical, but traveling around it shall 
also expose to the readers how different application domains have been addressed, with particular attention to business sustainability.

In this column, rather than taking a trip to a geographical 
location, we explore the world of AgriTech, shedding light on 
the currently available technology assets and on some of the 
hurdles any technology transfer initiative in this domain is fac-
ing, slowing down adoption of ICT in agriculture. Through this 
journey we will therefore at first take a look at the landscape 
of technology enablers supporting the vision of an upcoming 
fourth agricultural revolution, while in the second part we will 
juxtapose a picture of what the world of potential adopters 
looks like, identifying what are the adoption showstoppers.

Let’s Start with Some Numbers
Precision crop farming’s market size alone is set to increase 
from USD 1 billion in 2018 to USD 2.3 billion in 20231. The 
smart agriculture market was valued at USD 6.34 billion in 
2017 and is expected to reach USD 13.50 billion by 2023, at 
a CAGR of 12.39 percent during the forecast period2. Agricul-
ture employs more than one billion people and generates over 
USD 1.3 trillion dollars worth of food annually3. AgriFood Tech 
startups, innovating from farm-to-fork, raised USD 10.1 billion in 
2017, a 29 percent year-over-year increase4.

From a mere numbers perspective we are looking at a 
steadily growing sector. In this article we focus within the Pri-
mary Production sector of the whole food value chain, the one 
that should be of immediate concern for growers and farmers. 
We will talk about AgriTech as opposed to FoodTech: separate 
considerations and analysis for the food transformation and dis-
tribution sectors are outside the scope of this column. 

The AgriTech is there to give opportunities for remote moni-
toring and precise treatments in the fields, increasing yields while 
going back to sustainable practices. The whole sector is on the 
verge of a new revolution, and that in itself is a big happening 
worth following. A look back is enough to realize how agricultur-
al practices have been consistently refractory to change. In fact, 
from 10,000 BC when stationary farming was introduced until 
the present day, the rate of change in agricultural practices only 
had a spike between the 17th and late mid 19th centuries (new 
techniques for crop rotation, more efficient use of arable land 
and utilization of livestock) and between the 1950s and 1960s 
(mechanization and the use of chemicals). The above-mentioned 
expected growth numbers though, analyzed together with cur-
rent challenges in terms of climate change, sustainability, grow-
ing population and new, low-cost technology availability, all 
point in the direction of a new agricultural revolution.

The Technological Assets
Technology has definitely made a leap forward in the last 
decade toward creating solutions that are more and more 
affordable also for the Primary Production sector, historically 
characterized by low margins.

On this front innovation started already a few years ago 
leveraging on earth observation and remote sensing with sat-
ellites like the U.S. Landsat 8 (2013 launch)5 and the Sentinels 
from the EU/ESA program Copernicus (Sentinel-2A launched in 
2015 and Sentinel-2B launched in 2017)6. 

Copernicus in particular aims to foster innovation and business 
development with freely available satellite multi-spectral images, 
which are made available every few days. These images, duly inter-
preted and georeferenced, can provide a lot of useful information 
about the situation in a crop/soil. The granularity of this data, how-
ever, does not go to lower than 10 meters resolution and therefore 
AgriTech solutions leveraging such data would only be suitable for 
large scale farming and crops like wheat, maize, barley, rye, oilseed 
rape, potatoes, etc. Still a lot of information can be extracted by 
calculating, for example, various vegetation indices7. With improve-
ments in imaging technologies on board satellites, also came the 
ability to map soil features, crop vigor, chlorophyll content, the 
need for fertilizers, water, and yield for some type of crops. 

On the innovation front many startups leverage these 
open-data to implement and sell farm management systems 
that fulfil short term needs of the agriculture industry. Such 
data also enable unprecedented applications like JRC MARS8 
which can support growers with regular bulletins derived from 
their Crop Monitoring Service. Looking further ahead, land 
observation satellite data also provide valuable information for 
policy makers to set guidelines on the proper management of 
this important sector (i.e., 2018-23 U.S. Agricultural Policy and 
2021-27 EU Common Agricultural Policy9). 

Remote satellite sensing can leverage open-data and certain-
ly helps large-scale farming businesses and policy makers, but 
has its limitations when it comes to resolution (both in time and 
space dimensions), crop diversity and field size. This is where 
progress in “closer to earth”, yet remote sensing technologies 
have appeared to address some of these shortcomings. 

Here the data-collection is no longer relegated to the design 
of an API into an open-data store, but it becomes part of the 
investment when one needs more precise AgriTech solutions. 
In recent years we saw the booming of drone-harvested data 
(which, like satellite, use passive remote sensing technologies10) 
but also the advent of more costly but highly efficient active 
remote sensing technologies such as LIDAR (Light Detection and 
Ranging) mounted on unmanned vehicles and using scanning 
lasers for various applications, more related to durable monitor-
ing. Costs and complexities of these types of technologies are 
such that their use is more of a one-off every few years to survey 
the soil rather than being used in daily interactions with crops. 

For highly interactive purposes, addressing the time and 
space lack of granularity and producing continuous data-
streams, we find the IoT-based solutions: the advent of low-
cost, long duration, wide coverage networks (i.e., LPWANs) 
for collecting data is enabling the ultimate precision agriculture 
solutions. These cover the holes that remote sensing cannot 
fulfil and provide high granularity monitoring data where the 
resolution needs to go well below the 10m threshold or where 
there is no remote visibility (such as in greenhouses and tree 
shaded areas etc.) and with readings well within one hour inter-
vals (compared to “every few days” from satellite, for example). 

The growth in this sector has been fuelled by reduced sizes and 
costs of sensing devices as well as increased coverage of data collec-
tion networks which have considerably reduced the density of fixed 
infrastructure needed to create meaningful services for the growers. 

A Dive into the AgriTech 
World: Technologies and 
Adoption Incentives
by Raffaele Giaffreda 
Chief IoT Scientist, Fondazione Bruno Kessler
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AROUND THE WORLD OF IOT

what are the barriers to aDoPtioN?

Having seen a quick overview of assets and technologies avail-
able for AgriTech solutions, we use this second part of the 
column to review the hurdles that we still see on the path to 
adoption and to making the fourth revolution in agriculture 
happen for real. 

Being on the forefront of technology transfer in this domain, 
we can share some of our impressions from working directly 
with growers. To facilitate passing the message, we draw a 
comparison between the Internet of People and the Internet 
of Things, trying to derive from the former lessons which, duly 
contextualized, should also apply to the latter. The objective 
here is to explain what barriers one has to face when innovating 
in the agricultural sector. 

Well, much of the contextual background shows evidence 
of a world where farmers and growers dig their knowledge 
deep into their predecessors’ practices. The non-millennials of 
our readers might still remember people resisting ideas about 
online shopping stores, claiming they would never give up on 
their “look and feel” experience while shopping. Many of us still 
go to food markets and visit bookstores, but the above claim 
hasn’t stopped the likes of Amazon or Walmart from riding the 
success wave of online shopping, fuelled by the enthusiasm of 
early adopters and by reliable access and web technologies that 
made the whole experience stress-free. 

By contrast, “it has always been done this way” is by far the 
answer you hear most when you question the reasons that lead to 
this or that agricultural practice. Or it is a justifi cation for not being 
willing to bother, or being afraid of what unforeseeable problems 
innovation might cause. The biggest barrier to change in reality is 
the problem of low margins for the actors at the bottom of the 
value-chain of what still remains the world’s largest industry11. 
What experience are AgriTech early adopters getting? And what 
are the incentives that can push adoption rates to increase?

The first hurdle to adoption is what also caused the digital 
divide in the Internet: the problem of access. While connectivity 
options do exist in rural areas, having to bother with subscription 
charges and SIM connected devices raises the adoption threshold. 
Removing that hurdle with widespread LPWAN coverage, where 
wireless sensing devices can work “out of the box” with no cables 
and no installations to worry about, greatly facilitates opportunities 
for “try and see.” Which leads me to the other problem innova-
tors face: the Internet of People is fast-paced, and speed is part of 
the game for gaining users’ attention on the next sleek app.

Growers and farmers cannot be cornered with arrogant 
apps that pretend to control their crops better than they would. 
Innovators must have on their plan an initial phase where the 
AgriTech solution is there, “just in case,” but ready to provide 
meaningful data or pondered advice. 

The widespread success of the Internet of People came with 
widespread access, but also with the ability to channel the wealth 
of data the Web was collecting via interesting web/smartphone 
applications perceived as adding value to the point where consum-
ers did not mind paying for it. Similarly for AgriTech, the million 
dollar question becomes what can one do with data collected in 
the fi elds, that is perceived as adding value to the growers’ daily 
activities. Readings from sensors must be calibrated to the context 
(soil, meteo, crop, etc.) and interpreted to become meaningful 
insight rather than simply left to animate fancy dashboards. Co-cre-
ation is key and the right amount of time must be allocated to this. 

Getting the correct and usable solution for the growers is 
only one side of the incentives coin: it should help growers with 
remote controlling their crops’ health and conditions easily, 
allowing them to better invest their time and physical presence 
in more worthy tasks. 

The other side of the incentives coin relates to the outside 
perception of what we, as consumers, think and want from our 
food. On this front there certainly is a trend where sustainable 
agricultural practices and products can be monetized because 
distribution chains want it, because fi nal customers want it and 
are prepared to pay additionally for it or choose it over other 
products which cannot make the same claims.

Even though positioned within the poorer side of the “Agri-
Tech to FoodTech” value chain12, Primary Production compa-
nies can leverage this particular demand to monetize higher 
market values for their raw products, provided AgriTech helps 
them show evidence about their “sustainability compliant” prac-
tices. Nothing is better than IoT technologies and widespread 
sensing for producing that evidence and Distributed Ledger 
Technologies for keeping trace and eventually redistributing 
value from the “close to consumers” side of the value-chain 
(FoodTech) back to the “close to growers” side. Examples could 
be sharing among the farmers savings derived from reduced 
electricity bills if less irrigation water is consumed or sharing 
part of profi t increases where distribution puts on supermarket 
shelves products that sell more because of the certified way 
they have been produced13; but this is part of another journey.

What we say here is that the use of IoT can also be justifi ed 
if it helps to more seamlessly and automatically prove adher-
ence to various certifi cation requirements or to a given set of 
production rules, which for traceability purposes is a must14. In 
both cases the adopter-growers can diff erentiate their products 
on the market and AgriTech is there to support them focusing 
on what they can do best, which is farming and not paperwork. 

In conclusion, growing population, SDGs15, climate change, 
advances in agriculture (i.e., vertical farming and hydroponics) 
are certainly going to bring changes. Those operators who still 
believe the “it has always been done this way” mantra will keep 
them out of trouble are in for a shaky ride into the future with 
loss of competitiveness at the end of it. 
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AFTERWORD

First, my thanks and appreciation to Raffaele Giaffreda for 
pulling together this issue. Many thanks also to the authors, 
reviewers, and publications staff who made this issue of 

IoTM possible. IoTM is a team effort!
With this issue, we also inaugurated the Smart Cities section 

of IoTM. Rebecca Hammons and Joel Myers, who were the 
Guest Editors for our Smart Cities issue, have been joined by Jean 
Rice to be the regular editors for Smart Cities. This issue’s contri-
bution, “Growing Plants, Raising Animals, and Feeding Commu-
nities Through Connected Agriculture: An IoT Challenge,” by 
Ankita Raturi and Dennis Buckmaster, intersects the domains of 
smart agriculture and smart cities. The authors present a systems 
approach to IoT and agriculture, and describe five categories of 
connectedness in agriculture, ranging from plants and animals to 
machines, people, and environments. Many of the design chal-
lenges in smart cities are shared by smart agriculture. The authors 
close with the presentation of three open-source communities of 
practice that are addressing these challenges.

As Editor-in-Chief, I am particularly gratified by the attention 
that IoTM is acquiring, as evidenced by the number of propos-
als for special issues that have been submitted. We are adapt-
ing the Editorial Calendar to accommodate the proposals. The 
IoTM Editorial Calendar for the next 24 months is listed in the 
accompanying table. Individuals and organizations involved in 
the topic areas listed are invited to submit articles.

The Calls for Special Issues can be found on the IoTM web-
site: https://www.comsoc.org/publications/magazines/ieee-in-
ternet-things-magazine. Articles not specifically addressing 
the topic areas will also be accepted.The IoTM General Call 
for Articles can be found at https://www.comsoc.org/publi-
cations/magazines/ieee-internet-things-magazine/cfp/gener-
al-call-articles and is reproduced below.

Call for Articles
The Internet of Things Magazine (IoTM) publishes high-quality 
articles on IoT technology and end-to-end IoT solutions. IoTM 
articles are written by and for practitioners and researchers 
interested in practice and applications, and selected to repre-
sent the depth and breadth of the state of the art. The technical 
focus of IoTM is the multi-disciplinary, systems nature of IoT 
solutions. IoTM is a forum for practitioners to share experiences, 
develop best practices, and establish guiding principles for tech-
nical, operational and business success.

The magazine is currently soliciting articles for publication. 
Articles should examine one or more actual deployments of an 
IoT solution and discuss:
•	 A high-level operational description of the IoT solution, 

addressing: the problem space; a summary of systems 
operation; and how the overall problems were solved.

•	 A high-level technical description of the IoT system: What 
technical challenges were encountered? What solutions 
were developed? What were the technical risks encoun-
tered in development? How were they overcome?

•	 A summary of the business case: What kind of benefits 
did the stakeholders receive from the solution? Were they 
greater than or less than expected? Were any policy or 
regulatory issues encountered?

•	 Lessons learned from deployment and operation: What 
were the key lessons learned? Can this experience con-
tribute to defining best practices? What were the risks and 
rewards? 
Articles should be general and present real-world experiences, 

with the intended audience being all members of the IoT com-

munity, independent of technical or business specialty. Articles 
are expected to add to the knowledge base or best practices 
of the IoT community; sales/marketing materials are not appro-
priate. Authors are asked to strive to make their papers under-
standable by the general IoT practitioner. Mathematical material 
should be avoided; instead, references to papers containing the 
relevant mathematics should be provided. Authors are encour-
aged to use color figures and submit multimedia material along 
with their articles for review. Authors should target 4,500 words 
or less (from introduction through conclusions, excluding figures, 
tables, and captions), or six (6) pages. Figures and tables should 
be limited to a combined total of six. The number of archival ref-
erences is recommended not to exceed fifteen (15). 

IoTM also publishes regular columns on topics of interest to 
IoT practitioners. Topical columns update readers on issues and 
events in the world of IoT. Regular columns are published in the 
following areas:
•	 Around the World of IoT — Recent events or technology 

developments in IoT.
•	 Bridging the Physical, the Digital, and the Social — Social-

ly-aware advancements in IoT.
•	 Policy and Regulatory Affairs — Discussions and reports on 

policy issues facing the world of IoT.
•	 IoT Standards — Discussions and reports on efforts in stan-

dardization of IoT technology and systems.
•	 Privacy and Security — Discussions and reports on interac-

tion of IoT with privacy and security concerns.
•	 Book Reviews

Columns should be of general interest to all members of 
the IoT community. Columns should inform the reader about 
issues and events that may affect the business and practice of 
IoT; sales/marketing materials are not appropriate. Authors 
are asked to strive to make their articles understandable by 
the general IoT practitioner. Authors should target 1500 words 
or less (from introduction through conclusions, excluding fig-
ures, tables, and captions), or two (2) pages. Figures and tables 
should be limited to a combined total of two. The number of 
archival references is recommended not to exceed five (5). 

Authors should submit articles and columns to https://
mc.manuscriptcentral.com/iotmag.

IoTM does not have a specific template and does not require 
manuscripts to be submitted in any specific layout. However, 
authors can use the template for IEEE Transactions to get a rough 
estimate of the page count: https://www.ieee.org/publications_
standards/publications/authors/author_templates.html.

New Section Focuses on Smart Cities

Topic Submission due date Publication date

Communications for IoT: 
Connectivity and Networking

March 2020

Blockchain-Enabled Industrial IoT June 2020

Computational Intelligence 
in Internet of Everything

February 2020 September 2020

IoT and the Environment April 2020 December 2020

IoT and Privacy June 2020 March 2021

IoT and eHealth August 2020 June 2021

IoT and Defense November 2020 September 2021

Standards for IoT March 2021 December 2021
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